Digital Library

cab1

 
Title:      QEA FOR OUTLIER DETECTION IN SIMPLE LINEAR REGRESSION
Author(s):      A. A. M. Nurunnabi , Salena Akter
ISBN:      978-972-8924-97-3
Editors:      Hans Weghorn and Pedro Isaías
Year:      2009
Edition:      V II, 2
Keywords:      Genetic algorithm, linear regression, outlier, QEA, regression diagnostics, and robust regression.
Type:      Short Paper
First Page:      28
Last Page:      32
Language:      English
Cover:      cover          
Full Contents:      click to dowload Download
Paper Abstract:      Outlier detection belongs to the most important tasks in data analysis. Regression analysis has seen a great impact on learning from data. Generally, ‘regression diagnostics’ and ‘robust regression’ are employed for outlier detection in regression analysis. In this paper we propose a quantum-inspired evolutionary algorithm (QEA) for identifying outliers in simple linear regression. Numerical examples show the success of the new algorithm, and make the comparisons with the existing diagnostic methods.
   

Social Media Links

Search

Login