Digital Library

cab1

 
Title:      FINDING SIMILAR MUSIC ARTISTS FOR RECOMMENDATION
Author(s):      Lisa Wiyartanti , Laehyun Kim
ISBN:      978-972-8924-93-5
Editors:      Pedro Isaías, Bebo White and Miguel Baptista Nunes
Year:      2009
Edition:      1
Keywords:      Information retrieval, music contents, artist similarity; user rating
Type:      Full Paper
First Page:      535
Last Page:      542
Language:      English
Cover:      cover          
Full Contents:      click to dowload Download
Paper Abstract:      Music information retrieval had become an interesting research subject to be explored. The development of information clustering leads the user to find related contents and interests more easily. In this paper, we present a recommendation of similar music artists based on the music genre classification, artist’s era, and social rating information. The algorithm is performed in three steps: compute similarity measure on music genre; apply the user rating factor to the artist; and finalize the similarity by selecting artists who have the same period of music activities. The Jaccard coefficient and Nearest-Neighbor search have been used in the computation. The experiment shows that we can obtain better results using the proposed method.
   

Social Media Links

Search

Login