Digital Library

cab1

 
Title:      A FEDERATED LEARNING SYSTEM FOR OPTIMISED ENVIRONMENTAL CONTROL OF CONSECUTIVE AREAS
Author(s):      Robert Perry and Enda Fallon
ISBN:      978-989-8533-90-6
Editors:      Piet Kommers and Guo Chao Peng
Year:      2019
Edition:      Single
Keywords:      Artificial Neural Networks, Ambient Temperature Control, Building Management Systems
Type:      Full Paper
First Page:      209
Last Page:      216
Language:      English
Cover:      cover          
Full Contents:      click to dowload Download
Paper Abstract:      Building management systems have led to artificially controlled environmental conditions. While new infrastructure will lead to a lower carbon footprint and a better working environment, the costs cannot justify the rewards at this present time. Ambient temperature regulation has the potential to mitigate excessive energy consumption. This work proposes an externally influenced environmental control Artificial Neural Network (ANN) implementation to optimise ambient temperature for a given specific area whether that be internal or external to the building. The approach uses a multi-aspect ANN. Two architectural components are introduced, an Agent ANN (A-ANN) and a Coordinating ANN (C-ANN). The Agent ANNs (A-ANN) are deployed to provide temperature control at the extremities of the open plan area. The A-ANN operates with a degree of autonomy. A Coordinating ANN (C-ANN) considers the optimal ambient temperature of the room and consequently effects the surrounding area(s). These A-ANNs have internal and external factors acting as effectors to the system such as outdoor environmental conditions and internally located effectors such as adjacent rooms. Results are presented which diagnose the effort applied by A-ANN instances in varying environmental conditions both internally and externally.
   

Social Media Links

Search

Login