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ABSTRACT 

There has been a proliferation of mobile apps in the Medical, as well as Health&Fitness categories. These 

apps have a wide audience, from medical providers, to patients, to end users who want to track their fitness 

goals. The low barrier to entry on mobile app stores raises questions about the diligence and competence 
of the developers who publish these apps, especially regarding the practices they use for user data 

collection, processing, and storage. To help understand the nature of data that is collected, and how it is 

processed, as well as where it is sent, we developed a tool named PIT (Personal Information Tracker) and 

made it available as open source. We used PIT to perform a multi-faceted study on 2832 Android apps: 
2211 Medical apps and 621 Health&Fitness apps. We first define Personal Information (PI) as 17 different 

groups of sensitive information, e.g., user’s identity, address and financial information, medical history or 

anthropometric data. PIT first extracts the elements in the app’s User Interface (UI) where this information 

is collected. The collected information could be processed by the app’s own code or third-party code; our 
approach disambiguates between the two. Next, PIT tracks, via static analysis, where the information is 

“leaked”, i.e., it escapes the scope of the app, either locally on the phone or remotely via the network. 

Then, we conduct a link analysis that examines the URLs an app connects with, to understand the origin 

and destination of data that apps collect and process. We found that most apps leak 1–5 PI items (email, 
credit card, phone number, address, name, being the most frequent). Leak destinations include the network 

(25%), local databases (37%), logs (23%), and files or I/O (15%). While Medical apps have more leaks 

overall, as they collect data on medical history, surprisingly, Health&Fitness apps also collect, and leak, 

medical data. We also found that leaks that are due to third-party code (e.g., code for ads, analytics, or user 
engagement) are much more numerous (2x–12x) than leaks due to app’s own code. Finally, our link 

analysis shows that most apps access 20–80 URLs (typically third-party URLs and Cloud APIs) though 

some apps could access more than 1,000 URLs. 
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1.  INTRODUCTION 

Mobile apps collect billions of users’ data each day: Android alone has in excess of 3 billion 

monthly active users (Samat, 2022). Among these, apps designed for medical, health, or fitness 

purposes, are particularly important, because the data they collect contains personally 

identifiable information, and medical/health data. However, one major downside of apps 

collecting (and users providing) this data lies in the possibility of its misuse. Data is routinely 

sent to advertisers; stored in the Cloud where it can be accessed by malicious actors; 

alternatively, naive developers can store or save personal information in a way that enables other 

malicious apps to read, copy or leak otherwise confidential information. PI leaks are 

consequential: leaked PI can be sold for profit, (mis)used to identify individuals, or used as a 

non-repudiation authenticator for blackmail purposes (Van Alstin, 2024). Even in relatively 

mild cases, collecting just a person’s date of birth, gender, and postal code can be enough to 

identify them (Sweeney, 2000). 

Little effort has been put into understanding and exposing leaks of data that users supply via 

the app’s UI, especially in the context of health, fitness, or medical apps. We devised a  

two-prong approach towards understanding and addressing this issue and implemented it in a 

tool named PIT. We construct an automatic way of extracting PI from app GUIs via Information 

Retrieval, and then couple this with a flow analysis to understand where, and how, PI is leaked. 

We ran PIT on 2,832 Android apps (overall: 47,749 GUI elements) and found 44,753 leaks. We 

categorized the nature of the leaks: 18.3% were due to app’s own code, aka own-code, while 

the vast majority, 81.7%, were due to external-code (ads, analytics, user engagement, etc.). 

Medical apps have 3x more PI leaks, and 2.5x more network leaks, than Health&Fitness apps. 

Our own prior work (Ardalani et al., 2024) used a less precise mechanism for labeling UI fields 

as collection points for PI data, which could result in a higher rate of false positives compared 

to this work; in addition, our prior work did not look at per-app statistical analysis of how many 

PIs are leaked, and which PIs are leaked together. Finally, our prior study did not analyze 

embedded links (URLs). Prior work on PI leaks have used dynamic analysis (McClurg et al., 

2013) but only analyzed up to 100 apps. Some efforts used differential analysis, a 

cryptographical method of retrieving a plaintext from an encrypted data stream (Continella  

et al., 2017). Other efforts used network traffic analysis (Jia et al, 2019) (Ren et al, 2016) but 

only examined data that left the device, without tracking sensitive data that could be exposed in 

device storage.  Our work differs from prior works in what information we consider to be leaks, 

and how we characterize the leaks. One line of prior work aimed to find leaks of hardware 

device identifiers, such as MAC addresses, serial numbers, device location, etc. (Arzt et al., 

2014). However, we aim to find leaks of personal information, or personal identifiers such as 

name, weight, height, date of birth, or postal (Zip) code. Another line of work on detecting 

sensitive input in UI (Huang et al., 2015) has included identity and weight/height information 

as we do, but did not look for medical information, and did not track where the information is 

flowing, or who is responsible for the leak (own-code vs external-code). Work that has 

distinguished between own-code (first-party) and external-code (third-party) leaks (Rahaman  

et al., 2021) has only focused on hardware identifiers, and not analyzed the destination of leaks, 

e.g., network, logs, files, local DB storage, as we do. 
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2. APPROACH 

PIT consists of two analyses. First, PIT runs a GUI analysis that extracts and categorizes the PI 

collected. Second, PIT runs a taint (information flow) analysis to determine where the PI flows 

(leaks). 

2.1 GUI Analysis 

 

Figure 1. Overview of PIT’s GUI analysis process 

Overview. Figure 1 shows our analysis process. Android apps are distributed as “.apk” files, 

so we name them APKs for short. An APK bundles app code with app resources (e.g., strings, 

icons, images). The dataset for this study consists of 2,832 APK files, downloaded from the 

Google Play Store’s Medical, as well as Health&Fitness, categories. The APK files are then 

decompiled using JADX (JADX, 2024), yielding the source code and associated resources, 

including XML files. 

Extracting GUI elements. Next, the extracted XML files, which contain the GUI layout 

definitions and other critical information about the application's GUI components, are 

processed. In Android, all GUI elements descend from class View. We filter out non-View 

elements, ensuring that only relevant GUI components, such as EditText, Spinner, CheckBox 

and RadioButton, are retained. 
 

 

Figure 2. UI-XML mapping for app Weight Loss Tracker 
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In Figure 2 we show the mapping between XML code and UI for app Weight Loss Tracker. 

This app contains several Views: EditText, Button, etc. Note how in this case the android:id 

associated with UI elements facilitates analysis, because the id name, e.g., id/weightEditText or 

id/user_birthdate_button, directly encodes the PI semantics. However, there were two main 

additional challenges associated with UI extraction. First, there are UI elements where the 

android:id is non-suggestive, which required us to analyze other XML attributes, e.g., text, or 

hints associated with that View. Second, especially for medical information, we had to look for 

adjacent terms, as explained under “PI-based categorization” below. 

Personal Information (PI) definition. Regulatory frameworks such as HIPAA in the US 

define “protected health information” to include health conditions, care provided, and 

information that can be used to identify the individual (e.g., name, phone number, social security 

number, birthdate, etc. (HIPAA, 2024)). The focus of this paper is on information that is 

collected from the user, via the GUI. Specifically, based on initial analysis of the most frequent 

information present in GUIs, we focus on 17 PI grouped into:  

- Identity: email, name (first, last), address, zip code, credit card number, social security 

number.   

- Anthropometric/biopsychosocial: age (birthdate), height, weight, gender. 

- Medical: medical history, medication, blood-related, mental health, smoking or alcohol 

use. 

PI-based categorization. Mapping textual information attached to UI elements onto a PI 

semantics was nontrivial. We used techniques from Information Retrieval along with an 

iterative refinement process that aimed to increase precision (gradually reduce False Positives 

and False Negatives). Whereas Identity PI are relatively straightforward to find, other PIs 

require searching for adjacent terms. In Table 1 we show examples of such adjacent terms. 

Table 1. Information retrieval: adjacent terms for PI extraction 

PI Adjacent terms      

Medical history Surgery, Allergy, … 

Medication Prescription, Dosage, Dose, Drug, … 

Blood Glucose, Cholesterol, Oxygen, Pressure, … 

Mental health Stress, Panic, Anxiety, Depress, … 

2.2 Leak Analysis 

 

Figure 3. Overview of PIT’s leak (information flow) tracking process 

Flow analysis. Figure 3 shows the pipeline PIT uses to detect PI leaks: it employs a flow 

analysis – a standard program analysis that tracks flow of data from a source (origin) to a sink 

(destination) – to find how sensitive information collected by the app can leak to untrusted 

destinations. We define a leak as a path from a source to a sink; when multiple paths exist from 
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one source to one sink, we only count the shortest path. Prior work on security has typically set 

trusted device identifiers as sources, and untrusted destinations (network, SMS) as sinks. 

However, in our approach, we set UI components as sources, while as sinks, we set any method 

that can potentially leak user information, e.g., methods that send data to the network, or write 

to local storage. To create the list of sink methods, we started with the SuSi list (widely-used in 

security research (SuSi, 2024)) as our baseline and expanded it by manually adding more 

method signatures, tripling the count of the baseline. As flow analyzer, we used the standard 

FlowDroid tool (Arzt et al., 2014), which requires specifying Java methods as sinks and sources. 

However, in Android, UI elements are specified as XML objects, not as Java methods. 

In our previous work (Ardalani et al., 2024), we used the JADX tool to map object identifiers 

in XML to their Java creation code in the Android-specific R.java file, and from there we set 

the findViewById method as a source (findViewById is used to connect a UI element to its 

corresponding code section). However, using findViewById may lead to false positives, because 

findViewById can be used to extract (or connect to) UI object properties like font size, color, or 

the position of a view are tracked, rather than the contents of the UI object (e.g., text that contains 

PI). Therefore, we refined our analysis with a new approach to reduce these false positives. 

Figure 4 illustrates the overall enhanced process used to identify and set view sources for flow 

analysis, while Figure 5 presents a code example that demonstrates this process in action. The 

first step is a manual investigation of methods responsible for retrieving data from View 

elements, such as getText() for EditText view objects. We identify a collection of approximately 

100 such methods and use FlowDroid to analyze the data flow from these methods to extended 

sink methods. In Figure 5, line 6 serves as the source (editTextInput.getText()), and line 7 is the 

sink (fileOutputStream.write(text.getBytes()), where the user input flows to the file. 

 

 

Figure 4. Overview of configuring View elements as sources for information flow analysis 

The next stage of the analysis is Object Backtracking to ID. Here, we track the view object 

(editTextInput), on which the source method is invoked, to locate the corresponding 

findViewById() call and identify the ID associated with it. In our example, tracking 

editTextInput leads us to line 3, where the ID associated with it is IdOfView. In some cases, 

the ID is a constant value, but more often, the ID is an integer variable. Therefore, a further 

analysis step, depicted in Figure 4 as ID Backtracking to Value, is required to determine the 

value of the variable. In our example, the goal is to track IdOfView back to its value. As 

illustrated, the ID originates from the return value of the method integerID(), which is 

defined in line 10 and returns the constant value 100. Finally, after obtaining the constant integer 

value, we conduct a GUI Analysis (as shown in Figure 1), which involves mapping the integer 

ID back to the corresponding entry in the R.java class. This class serves as a bridge between 

Java code and the layout XML file, allowing us to link the integer ID to the appropriate UI 

element. 
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Figure 5. Example code demonstrating the flow of user input from a View element (getText()) to a 

sink (write()). 

Own-code vs. external-code flows. Another crucial aspect of precise leak attribution is 

distinguishing between own-code and external-code. Own-code is primarily identified by the 

application package name. For example, in app com.gotokeep.yoga.intl.apk, all the code whose 

package is com.gotokeep.* or com.gotokeep.yoga.* is considered own-code, whereas code in 

packages io.branch.* or com.facebook.* is considered external-code. Of course, code in 

package com.facebook.* would be considered own-code in the Facebook app itself. 

3. RESULTS 

App dataset. We ran our approach on 2,832 Android apps: 2,211 from Google Play’s Medical 

category and 621 from Google Play’s Health&Fitness category. We used two criteria for 

including apps in our analysis: (1) a minimum popularity threshold (≧ 500 installs), and (2) the 

apps had to be in English. 

3.1 What is the Prevalence of PI Collection? 

Figure 6 shows the prevalence of PI collection. We found that Email is by far the most collected 

information, with 44% of Health&Fitness apps (`Fitness’ for short), and 39% of medical apps 

collecting it, respectively. Next, we found that Age, Name (first, last), Phone number, Address, 

Gender, Height, are collected by about 15%–20% of the apps. As expected, the collection of 

specialized medical information (e.g., current medications, medical history, use of 

smoking/alcohol) is more prevalent in medical apps. However, we were surprised to see that 

fitness apps have a comparatively higher prevalence of collecting identity information such as 

email, weight, age, gender, height, compared to medical apps. 
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Figure 6. Prevalence of PI collected 

3.2 Own-Code vs. External-Code Leaks 

We begin with two motivating examples that illustrate the difference between own- and 

external-code leaks 

Motivating example: Own-code leak. The mental health app Panic Shield 

(com.panic.shield) is designed to protect users from panic attacks. The list of user phobias, 

labeled fear8name, is among the PI it collects; the app collects this information via an EditText 

and stores this information in the local SharedPreferences database. The result of flow tracking, 

that starts at the source and ends at the sink, indicates the methods and VM registers involved 

in the flow: 
 

SOURCE 

$r1=virtualinvoker0.<com.panic.shield.exposure.CreateHierarchy:android.view.View 

findViewById(int)> ⇒ 

$r23 = r0.<com.panic.shield.exposure.CreateHierarchy: java.lang.String l> ⇒ 

Interfaceinvoke $r25.<android.content.SharedPreferences$Editor: 

android.content.SharedPreferences$Editor 

putString(java.lang.String,java.lang.String)>("fear8name", $r23)                                          SINK 
 

We consider this a own-code leak since all the code involved belongs to the app (or Android 

itself).  
  

Motivating example: external-code leak. The Keep Yoga fitness app 

(com.gotokeep.yoga.intl) collects the user’s gender (encoded as a boolean) and uses the 

io.branch external-code library, which will store the gender in the local SharedPreferences 

database. The result of flow tracking is: 
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                                                                                                       SOURCE 

r11 = virtualinvoke $r6.<android.app.Activity: android.view.View findViewById(int)>($i0) ⇒ 

$r1 = <io.branch.referral.PrefHelper: io.branch.referral.PrefHelper prefHelper_> ⇒ 

putBoolean(java.lang.String,boolean)>($r1, $z0)                            SINK 
 

Note how in the flow from collecting the user’s gender (source) to storing it in the database 

(sink), there is a method from the io.branch external-code library. This library is primarily used 

for deep linking and user engagement (Table 3). The presence of third-party methods, such as 

those from io.branch, makes this external-code flow. Note how external-code flows increase the 

risk of data leakage: the data, once handled by external-code, can be stored locally but also 

potentially shared with third-parties (Reardon et al., 2019). Therefore, this second leak scenario, 

involving the sharing of data with external-code, is potentially more dangerous due to the 

additional risk of exposing personal information to external entities. 

Table 2. Leak statistics 

 Own-code       External-code 

Median 6 29 

Average 43.29 156.34 
Max 978 2559 

 

Table 2 shows statistical measures for leaks: we found that the typical app has 6 own-code 

leaks and 29 external-code leaks (the average values are affected by apps that have a large 

number of leaks, up to 978 own-code, and 2,559 external-code, as can be seen in the last row). 

We believe that these results are concerning, especially from the standpoint of external-code 

leaks. When the ratio of leaks induced by external-code libraries to an app’s own code is 29:6, 

essentially the developer has long lost control over who collects user data, and how this data is 

processed or sent. 

Overall leaks. Figure 7 shows histograms for the overall number of leaks, as well as  

own-code vs external-code leaks. The histogram on the left shows that 158 apps have less than 

20 leaks. However, please note that, to be included in the figure, an app had to have at least one 

leak. The histogram shows that dozens upon dozens of apps have a substantial number of leaks: 

48 apps have 20–40 leaks, 25 apps have 40–60 leaks, and 128 apps have more than 100 leaks. 

These numbers indicate that a high number of leaks is not an isolated incident; this provides an 

impetus to find and analyze apps with a high number of leaks. 

 

 

Figure 7. Leak distributions: overall (left) and own- vs -external code leaks (right) 
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Most prevalent external-code libraries. In Table 3 we show the nature and prevalence of 

top external-code libraries. For example com.facebook (which implements analytics and social 

media integration services) appears in 87 apps; io.fabric, which provides analytics, crash 

reporting, and user engagement services, appears in 38 apps. Note that an app may contain more 

than one of these external-code libraries, and there is a lot of fragmentation. While, for space 

reasons, we only present the top-9 libraries, there are dozens of other external-code libraries that 

we found in apps. 

Table 3. Most frequent external-code libraries and their nature 

 #Apps  Ads Analytics Payment 

Processing 

Crash 

reporting 

User 

engagement 

Deep 

linking 

Authenti-

cation 

Social 

Media 

Integration 

com.facebook 87  •      • 

com.squareup 58  • •      

io.fabric 44  •  • •    

io.branch 38     • •   

net.hockeyapp 34    • •    

com.crashlytics 28  •  •     

com.appboy 26  •   •    

com.mopub 24 •        

com.applovin 20 • •       

3.3 Where does the PI Leak? 

We now discuss each leak destination, quantified in Table 4. Net indicates that the information 

is leaked over the network; these leaks are the most concerning, because the moment the 

information has left the phone, the user has de facto lost control over where the information 

propagates. Please note that characterizing the network domain where information leaks to over 

the network – e.g., the app’s own servers, or analytics/advertisers – is challenging and requires 

a dynamic analysis (Wei et al., 2012). Log indicates that PI information is leaked to system logs; 

this is problematic because system logs are visible to any app.  Local DB/Bundles/Shared Pref 

indicates that the information is leaked to local persistent storage (Bundle is the Android 

serialization mechanism, and SharedPreferences store user preferences). File/IO indicates that 

the PI is saved in local files. Note that leaks to local storage (DB, files) have been proven to be 

used by malicious apps and malicious libraries to exfiltrate data (Reardon et al., 2019). The table 

reveals that, depending on the destination, external-code leaks are 1.8x–11.9x more numerous 

than own-code leaks.  For brevity we omit showing the distribution for each destination, 

however we found that apps that have own-code network leaks typically have few (<20), 

whereas 40 apps had ≥ 20 network leaks (they are all external-code leaks). 

Table 4. Leak destinations 

 #Leaks % of overall leaks  Own-code External-code 

Net 11002 24.59 916 10086 

Local DB/Bundle/SharedPrefs. 16595 37.08 3073 13522 

Log 10325 23.07 3687 6638 

File, I/O 6831 15.26 529 6302 
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3.4  Fine-Grained PI Leak Analysis 

Table 5 shows fine-grained results: the number of apps in each category that exhibit at least one 

leak for that PI, as well as totals for each PI and each destination. Note that an app can have 

multiple leaks of the same PI to the same destination, e.g., the Email is saved into two different 

files, or sent onto the network via two different connections. In this subsection only, when 

referring to “leaks” we count apps, not individual leaks; in other words, any app that has more 

than one PI→destination leak is only counted once. Overall, Medical apps have about 3x more 

leaks than Fitness apps (1490 vs. 510) in part due to medical apps collecting specific medical 

PI; nevertheless, some Fitness apps still collect and leak medical PI such as medication, blood, 

or smoking/alcohol use. Weight, Email, First Name, and Gender are the most frequently leaked 

personal information in Fitness apps, while Email, Credit Card, Phone Number, and Address 

are the most commonly leaked in Medical apps. 

Interestingly, while 44% of Fitness apps collect the Email, only about 14% leak it (see Figure 

1); whereas 39% of Medical apps collect the Email, and 34% leak it. Another interesting point 

is that Fitness apps have a much higher tendency to collect and leak Weight and Height. 

Interestingly, Fitness apps show a greater tendency to collect and leak data related to physical 

attributes, such as Weight and Height, reflecting their focus on users' physical characteristics. 

On the other hand, Medical apps are more likely to collect Credit Card information, along with 

related personal information like Addresses and Phone Number, which are commonly used in 

payment processing. A positive finding is that Social Security Number (SSN) were not leaked 

in any of the analyzed applications. We also noticed that Medical apps have 2.5x more network 

leaks than Fitness apps do (341 vs. 133), making them higher risk (and inviting more scrutiny) 

than Fitness apps. 

Table 5. Fine-grained PI leak information (#of apps exhibiting one or more leaks of that PI) 

      Fitness                        Medical  

 Net Log DB FileI/O Total Net Log Net FileI/O Total 

Email 24 25 25 15 89 85 64 84 54 287 

First name 11 7 10 7 35 16 13 30 23 82 

Last name 10 6 7 5 28 18 18 33 20 89 
Phone 6 3 4 4 17 46 25 60 44 175 

Address 5 12 11 4 32 33 35 78 30 176 

Zip 5 3 4 3 15 11 11 14 8 44 

Gender 8 8 13 5 34 15 15 18 7 55 
SSN 0 0 0 0 0 0 0 0 0 0 

CCard 9 8 8 5 30 52 33 92 52 229 

Age 4 9 3 2 18 15 20 18 11 64 

Weight 28 34 34 19 115 7 17 16 6 46 
Height 8 10 9 4 31 4 8 11 4 27 

Medical hist. 5 4 6 4 19 18 25 31 12 86 

Medication 3 3 3 2 11 15 22 27 11 75 

Blood 3 3 3 2 11 9 5 8 2 24 
Mental health 3 7 8 2 20 6 8 10 3 27 

Smoke/Alcohol 1 1 3 0 5 1 0 3 1 5 

Total 133 143 151 83 510 341 319 533 288 1490 
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3.5  Frequency of Personal Information Leaks Across Apps 

In this section, we examine the occurrence of personal information (PI) leaks across various 

apps. Figure 8 illustrates the distribution of PI leaks by frequency. Notably, approximately 50% 

of the apps exhibit a single PI leak, with the most commonly leaked PIs being Email, Medical 

History, and Address. Around 22% of the apps leak two PIs, with the combinations (Address, 

Credit Card), (Height, Weight), and (First Name, Last Name) being the most frequent pairs. For 

apps leaking three PIs, the most prevalent groupings are (Credit Card, Email, Phone) and (Email, 

First Name, Last Name). In instances where apps leak between four and nine PIs, no consistent 

pattern emerges. The leaked information varies significantly from one app to another, indicating 

less predictability in the types of information exposed when multiple PIs are involved. 

 

 
Figure 8. Frequency distribution of personal information (PI) leaks by the number of  

PIs leaked per app 

Figure 9 illustrates the presence of each pair of leaked personal information (PI) across the 

apps, showing how frequently these PI pairs are exposed. Notably, Credit Card appears in three 

out of the five most frequently leaked pairs, occurring in more than 40 apps. The PIs associated 

with Credit Card, such as Email or Phone Number, likely play a role in payment processing, 

serving as contact information for payment notifications or identification. Additionally, First 

and Last Name are commonly leaked alongside Credit Card, reflecting their relevance as the 

cardholder's name. Address is often included as well, typically for billing or shipping purposes. 

In 43 apps, both First and Last Name were leaked together, which is unsurprising. Furthermore, 

Email, either independently or in combination with these names, was leaked in 30 apps. The 

remaining leaked PI pairs also offer valuable insights and warrant further investigation. 
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Figure 9. Frequency of PI pairs across apps 

3.6 Characterizing Network Links  

Section 3.3 and Table 4 have indicated that 24.59% of the leaks were to the network. However, 

that does not indicate which entity the app is communicating with, over the network. When apps 

send or receive data, knowing the destination (or origin) of this data helps us determine the 

nature of the app, the nature of the communication, and potential areas of concern. Furthermore, 

it can also help the end-user track what websites or services are receiving their data or help 

prevent misuse of that data. To address this issue we analyzed links, specifically the URLs 

embedded in apps, and then devised a characterization of these links. 

Extracting links. To extract links, we first decompiled the app using the JADX (JADX, 

2024) and apktool (Apktool, 2024) decompilers, extracted all the URLs found in the decompiled 

version, and finally categorized the links. When classifying links, we grouped them into one of 

four classifications: first-party, third-party, advertising, and Google APIs. Our data, displayed 

in Table 6, shows that Google APIs are the most popular links (46.51%), followed by  

third-party links (37.64), then first-party links (11.79%).  
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Table 6. Link categories and their prevalence 

Statistic First-party Third-party Advertising Google APIs 

Total 16872 53835 5786 66516 

Percent 11.79         37.64 4.04 46.51 

 

First Party. These links indicate communication between the app and its own servers. To 

identify first-party links, we matched the URL’s domain name to a subsection of the app’s 

package name; if there was a match, the link would be classified as first-party. For example, 

links to ‘www.logbox.co.za’ were considered first-party when accessed in app ‘za.co.logbox’.  

Google APIs. These links indicate the use of Google services, e.g., Firebase storage,  

`Sign-in with Google’, etc. We identify such links based on the URL containing 

googleapis.com. Note that some Google API links could be advertising 

(‘www.googleapis.com/auth/display_ads’). 

Advertising. We deemed links as advertising if they point to known advertising providers, 

i.e., the URLs contained the domains: ‘amazon.com’, ‘facebook.com’, ‘aboutads.info’, 

‘shoppable.com’, ‘supersonicads.com’, ‘googleadservices.com’, ‘kargo.com’, ‘appsfire.com’, 

‘nativex.com’ and ‘tapestrylabs.com’, etc. 

Excluded Links. Apps contain an abundance of links to Web standards, and Web 

frameworks, e.g., ‘www.w3.org’ or government reference material (‘www.<resource>.gov’ or 

`www.<resource>.gov.>country>). We excluded these links from the analysis as we considered 

them to be routine/innocuous – simply an artifact of the apps using the Web. Moreover, when 

apps connect to these URLs, they generally do not send user data.  

Most Prevalent Link classifications. Figure 10 shows the number of links found in each 

app. The average app has 60.52 embedded links across all classifications; the geometric mean 

for all classifications was 25.12. Overall, out of 2,831 apps studied, 468 apps had no 

categorizable/valid links, 318 had 1–20 links, 704 had 20–40 links, 229 had more than 100 links, 

and 9 had more than 1000; these figures illustrate the breadth of app communication and the 

variety of URLs apps exchange data with. 

 

 

Figure 10. Links per app distribution 
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Most link-heavy apps. Table 7 shows the top-ten apps with the most links for each 

classification. The app with the highest number of overall links was 

org.iggymedia.periodtracker, with 9574 third-party links, and 168 known advertising links. The 

most common domains in this app were webmd.com, babycenter.com, and healthline.com. The 

app with the highest number of first-party links was webmd.com, with 8,598 first-party links, 

which we attribute to WebMD being a reference app. App infirmiers.pro had the highest number 

of advertising links (1498, which is a quarter of all advertising links in our 2832 app dataset).  

Table 7. Top-10 apps with the most embedded links 

 Most Link-Heavy Apps & their 

Classifications     

 

APK Name First-

party 

Third-

party 

Advertising Google 

APIs 

Top 3 Most common 

Links 

org.iggymedia.periodtracker 0 9574 168 31 webmd.com 

babycenter.com 

healthline.com 

com.webmd.android 8598 12 2 53 *.webmd.com 
googleapis.com 

 www.idangero.us 

com.WegileWildCard.transform 0 5744 1 53 dropbox.com 

googleapis.com 
gravatar.com 

infirmiers.pro 0 514 1498 31 facebook.com 

googletagmanager.com 

googleapis.com 
com.phillips.cdp.ohc.tuscany 392 1129 1 17 *.philips.* 

nakupovanje.net 

googleapis.com 

com.lf.lfvtandroid 0 1472 1 45 youtube.com 
googleapis.com 

lifefitness.com 

gov.va.general.med.ee 1287 20 0 22 *.va.gov 

googleapis.com 
nap.edu 

wikem.chris 0 1257 18 18 youtube.com 

mdcalc.com 

 thepocusatlas.com 
uk.co.classprofessional.cpg 18 1031 0 1 *.community.librios.com 

evidence.nhs.uk 

gravatar.com 

 com.bracemateapp.bracemate 29 623 0 1 dropbox.com 
google.com 

youtube.com 
 

Table 8 shows that a typical Medical app communicates with 27 URLs, whereas a typical 

Health&Fitness app communicates with 39 URLs. Table 9 shows statistics on links, separated 

by their classifications. A typical Medical app has 3 first-party links, 7 third-party links,  

2 advertising links, and 24 Google API links. In contrast, a typical Health&Fitness app has 4 

first-party links, 9 third-party links, 3 advertising links, and 29 Google API links. This data 

suggests that Health&Fitness apps have a higher inclination to communicate data to the URLs. 
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Table 8. Statistics by app Category 

Statistic Medical Health And Fitness 

Max 2043 9773 

Average 41.68 124.91 

Geometric Mean 21.7 41.57 
Median 27 39 

 

Table 9. Statistics by link category 

Health And Fitness Apps  

Statistic First-party Third-party Advertising Google APIs 

Max 8598 9574 168 234 
Average 103.75 53.63 4.34 59.34 

Geometric Mean 5.47 9.41 2.71 28.48 

Median 4 9 3 29.5 

 

Medical Apps  

Statistic First-party Third-party Advertising Google APIs 

Max 1288 1257 1498 231 

Average 17.84 15.14 4.06 29.47 

Geometric Mean 3.98 6.26 2.16 20.19 
Median 3 7 2 24 

3.7 Characterizing the UI elements that collect PI 

In total, our apps contain 47,749 Android View objects (i.e., GUI elements) that collect PI. 

Figure 11 shows the View types, along with the semantics of the PI they collect. For each type, 

we also indicate the top-3 most frequent PI that is collected with that View. The most prevalent 

UI object is EditText (50.8%) which allows arbitrary text input. Naturally, EditText is used to 

collect emails, addresses, first names, and so on. However, the flexibility of EditText can be a 

downside as well, when the information collected needs to have a certain type (e.g., numeric) 

or range, e.g., 0–100; in such cases, developers need to add input validation, whereas other 

controls, e.g., Spinner or SeekBar, can directly enforce a certain discipline on values or ranges. 

RadioButton and CheckBox are tied for the second most frequent PI collectors, typically used 

to select the gender, an age range, or a list of medications/medical conditions. 
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Figure 11. UI element distributions and the PI they collect 

3.8 Discussion 

We believe that (1) such apps should move toward collecting and leaking less, and (2) users, 

developers, app markets, and regulators can all play a role.  First, users should question 

developers’ over-collection, e.g., an app that simply computes the BMI should just ask for 

weight and height, and not ask for the user’s medical history. Second, as developers typically 

use third-party code for monetization (ads), they should balance revenue with the leaks that 

third-party code induces; similarly, users can put pressure on developers to reduce ads and leaks. 

Third, app markets can be more transparent about the data apps collect, e.g., offer a detailed 

description of the data collected, and where this data is stored/sent. Fourth, regulators should be 

much more aggressive in enacting measures to make apps transparent about collection, and 

protective of user data. 

4. TOOL: PERSONAL INFORMATION TRACKER 

Our approach is implemented in a tool called PIT (Personal Information Tracker), which, along 

with its documentation, is publicly available on our GitHub repository at github.com/Alireza-

Ardalani/PIT. By default, PIT supports 17 types of personal information as sources and tracks 

4 types of sinks: logs, network, database (DB), and input/output (IO) operations. However, PIT 

can be customized to accommodate other types of sources and sinks through a configurable 

setup. Figure 12 illustrates the output generated by the PIT tool when applied to the 

com.phr.PayNow application. In this representation, each type of personal information is shown 

as a label inside a square, while each sink type is depicted within a circle. The edges represent 

the flow of personal information to its corresponding sink, with red edges indicating  

external-code data flows and green edges representing own-code flows. 

https://github.com/Alireza-Ardalani/PIT


A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,  
AND FITNESS APPS 

109 

 

Figure 12. Output of PIT for com.phr.PayNow app 

5.  CONCLUSIONS AND FUTURE WORK 

Our study has revealed that Medical, as well as Health&Fitness apps, collect and leak a plethora 

of personal information. We believe that our work could be extended along several directions. 

First, a dynamic analysis that captures the destination of PI would provide a more precise 

temporal dimension of when data is collected, and how often it is transmitted to the network. 

Second, our current toolchain runs locally; we envision it could be extended to collect and report 

data for a given individual app to the end-users as a browser extension or directly on the phone. 

Finally, our analysis could be combined with a policy analysis to determine (and inform users) 

of app compliance with privacy regulations such as the GDPR in the EU or CCPA in California.   
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