
IADIS International Journal on WWW/Internet
Vol. 22, No. 2, pp. 93-110

ISSN: 1645-7641

93

A STUDY OF PERSONAL INFORMATION LEAKS

IN MOBILE MEDICAL, HEALTH, AND

FITNESS APPS

Alireza Ardalani, Joseph Antonucci and Iulian Neamtiu
New Jersey Institute of Technology, Newark, USA

ABSTRACT

There has been a proliferation of mobile apps in the Medical, as well as Health&Fitness categories. These

apps have a wide audience, from medical providers, to patients, to end users who want to track their fitness

goals. The low barrier to entry on mobile app stores raises questions about the diligence and competence
of the developers who publish these apps, especially regarding the practices they use for user data

collection, processing, and storage. To help understand the nature of data that is collected, and how it is

processed, as well as where it is sent, we developed a tool named PIT (Personal Information Tracker) and

made it available as open source. We used PIT to perform a multi-faceted study on 2832 Android apps:
2211 Medical apps and 621 Health&Fitness apps. We first define Personal Information (PI) as 17 different

groups of sensitive information, e.g., user’s identity, address and financial information, medical history or

anthropometric data. PIT first extracts the elements in the app’s User Interface (UI) where this information

is collected. The collected information could be processed by the app’s own code or third-party code; our
approach disambiguates between the two. Next, PIT tracks, via static analysis, where the information is

“leaked”, i.e., it escapes the scope of the app, either locally on the phone or remotely via the network.

Then, we conduct a link analysis that examines the URLs an app connects with, to understand the origin

and destination of data that apps collect and process. We found that most apps leak 1–5 PI items (email,
credit card, phone number, address, name, being the most frequent). Leak destinations include the network

(25%), local databases (37%), logs (23%), and files or I/O (15%). While Medical apps have more leaks

overall, as they collect data on medical history, surprisingly, Health&Fitness apps also collect, and leak,

medical data. We also found that leaks that are due to third-party code (e.g., code for ads, analytics, or user
engagement) are much more numerous (2x–12x) than leaks due to app’s own code. Finally, our link

analysis shows that most apps access 20–80 URLs (typically third-party URLs and Cloud APIs) though

some apps could access more than 1,000 URLs.

KEYWORDS

Personal Information Leaks, Medical Apps, Health & Fitness Apps, GUI Analysis, Android, Information

Flow Analysis

IADIS International Journal on WWW/Internet

94

1. INTRODUCTION

Mobile apps collect billions of users’ data each day: Android alone has in excess of 3 billion

monthly active users (Samat, 2022). Among these, apps designed for medical, health, or fitness

purposes, are particularly important, because the data they collect contains personally

identifiable information, and medical/health data. However, one major downside of apps

collecting (and users providing) this data lies in the possibility of its misuse. Data is routinely

sent to advertisers; stored in the Cloud where it can be accessed by malicious actors;

alternatively, naive developers can store or save personal information in a way that enables other

malicious apps to read, copy or leak otherwise confidential information. PI leaks are

consequential: leaked PI can be sold for profit, (mis)used to identify individuals, or used as a

non-repudiation authenticator for blackmail purposes (Van Alstin, 2024). Even in relatively

mild cases, collecting just a person’s date of birth, gender, and postal code can be enough to

identify them (Sweeney, 2000).

Little effort has been put into understanding and exposing leaks of data that users supply via

the app’s UI, especially in the context of health, fitness, or medical apps. We devised a

two-prong approach towards understanding and addressing this issue and implemented it in a

tool named PIT. We construct an automatic way of extracting PI from app GUIs via Information

Retrieval, and then couple this with a flow analysis to understand where, and how, PI is leaked.

We ran PIT on 2,832 Android apps (overall: 47,749 GUI elements) and found 44,753 leaks. We

categorized the nature of the leaks: 18.3% were due to app’s own code, aka own-code, while

the vast majority, 81.7%, were due to external-code (ads, analytics, user engagement, etc.).

Medical apps have 3x more PI leaks, and 2.5x more network leaks, than Health&Fitness apps.

Our own prior work (Ardalani et al., 2024) used a less precise mechanism for labeling UI fields

as collection points for PI data, which could result in a higher rate of false positives compared

to this work; in addition, our prior work did not look at per-app statistical analysis of how many

PIs are leaked, and which PIs are leaked together. Finally, our prior study did not analyze

embedded links (URLs). Prior work on PI leaks have used dynamic analysis (McClurg et al.,

2013) but only analyzed up to 100 apps. Some efforts used differential analysis, a

cryptographical method of retrieving a plaintext from an encrypted data stream (Continella

et al., 2017). Other efforts used network traffic analysis (Jia et al, 2019) (Ren et al, 2016) but

only examined data that left the device, without tracking sensitive data that could be exposed in

device storage. Our work differs from prior works in what information we consider to be leaks,

and how we characterize the leaks. One line of prior work aimed to find leaks of hardware

device identifiers, such as MAC addresses, serial numbers, device location, etc. (Arzt et al.,

2014). However, we aim to find leaks of personal information, or personal identifiers such as

name, weight, height, date of birth, or postal (Zip) code. Another line of work on detecting

sensitive input in UI (Huang et al., 2015) has included identity and weight/height information

as we do, but did not look for medical information, and did not track where the information is

flowing, or who is responsible for the leak (own-code vs external-code). Work that has

distinguished between own-code (first-party) and external-code (third-party) leaks (Rahaman

et al., 2021) has only focused on hardware identifiers, and not analyzed the destination of leaks,

e.g., network, logs, files, local DB storage, as we do.

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

95

2. APPROACH

PIT consists of two analyses. First, PIT runs a GUI analysis that extracts and categorizes the PI

collected. Second, PIT runs a taint (information flow) analysis to determine where the PI flows

(leaks).

2.1 GUI Analysis

Figure 1. Overview of PIT’s GUI analysis process

Overview. Figure 1 shows our analysis process. Android apps are distributed as “.apk” files,

so we name them APKs for short. An APK bundles app code with app resources (e.g., strings,

icons, images). The dataset for this study consists of 2,832 APK files, downloaded from the

Google Play Store’s Medical, as well as Health&Fitness, categories. The APK files are then

decompiled using JADX (JADX, 2024), yielding the source code and associated resources,

including XML files.

Extracting GUI elements. Next, the extracted XML files, which contain the GUI layout

definitions and other critical information about the application's GUI components, are

processed. In Android, all GUI elements descend from class View. We filter out non-View

elements, ensuring that only relevant GUI components, such as EditText, Spinner, CheckBox

and RadioButton, are retained.

Figure 2. UI-XML mapping for app Weight Loss Tracker

IADIS International Journal on WWW/Internet

96

In Figure 2 we show the mapping between XML code and UI for app Weight Loss Tracker.

This app contains several Views: EditText, Button, etc. Note how in this case the android:id

associated with UI elements facilitates analysis, because the id name, e.g., id/weightEditText or

id/user_birthdate_button, directly encodes the PI semantics. However, there were two main

additional challenges associated with UI extraction. First, there are UI elements where the

android:id is non-suggestive, which required us to analyze other XML attributes, e.g., text, or

hints associated with that View. Second, especially for medical information, we had to look for

adjacent terms, as explained under “PI-based categorization” below.

Personal Information (PI) definition. Regulatory frameworks such as HIPAA in the US

define “protected health information” to include health conditions, care provided, and

information that can be used to identify the individual (e.g., name, phone number, social security

number, birthdate, etc. (HIPAA, 2024)). The focus of this paper is on information that is

collected from the user, via the GUI. Specifically, based on initial analysis of the most frequent

information present in GUIs, we focus on 17 PI grouped into:

- Identity: email, name (first, last), address, zip code, credit card number, social security

number.

- Anthropometric/biopsychosocial: age (birthdate), height, weight, gender.

- Medical: medical history, medication, blood-related, mental health, smoking or alcohol

use.

PI-based categorization. Mapping textual information attached to UI elements onto a PI

semantics was nontrivial. We used techniques from Information Retrieval along with an

iterative refinement process that aimed to increase precision (gradually reduce False Positives

and False Negatives). Whereas Identity PI are relatively straightforward to find, other PIs

require searching for adjacent terms. In Table 1 we show examples of such adjacent terms.

Table 1. Information retrieval: adjacent terms for PI extraction

PI Adjacent terms

Medical history Surgery, Allergy, …

Medication Prescription, Dosage, Dose, Drug, …

Blood Glucose, Cholesterol, Oxygen, Pressure, …

Mental health Stress, Panic, Anxiety, Depress, …

2.2 Leak Analysis

Figure 3. Overview of PIT’s leak (information flow) tracking process

Flow analysis. Figure 3 shows the pipeline PIT uses to detect PI leaks: it employs a flow

analysis – a standard program analysis that tracks flow of data from a source (origin) to a sink

(destination) – to find how sensitive information collected by the app can leak to untrusted

destinations. We define a leak as a path from a source to a sink; when multiple paths exist from

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

97

one source to one sink, we only count the shortest path. Prior work on security has typically set

trusted device identifiers as sources, and untrusted destinations (network, SMS) as sinks.

However, in our approach, we set UI components as sources, while as sinks, we set any method

that can potentially leak user information, e.g., methods that send data to the network, or write

to local storage. To create the list of sink methods, we started with the SuSi list (widely-used in

security research (SuSi, 2024)) as our baseline and expanded it by manually adding more

method signatures, tripling the count of the baseline. As flow analyzer, we used the standard

FlowDroid tool (Arzt et al., 2014), which requires specifying Java methods as sinks and sources.

However, in Android, UI elements are specified as XML objects, not as Java methods.

In our previous work (Ardalani et al., 2024), we used the JADX tool to map object identifiers

in XML to their Java creation code in the Android-specific R.java file, and from there we set

the findViewById method as a source (findViewById is used to connect a UI element to its

corresponding code section). However, using findViewById may lead to false positives, because

findViewById can be used to extract (or connect to) UI object properties like font size, color, or

the position of a view are tracked, rather than the contents of the UI object (e.g., text that contains

PI). Therefore, we refined our analysis with a new approach to reduce these false positives.

Figure 4 illustrates the overall enhanced process used to identify and set view sources for flow

analysis, while Figure 5 presents a code example that demonstrates this process in action. The

first step is a manual investigation of methods responsible for retrieving data from View

elements, such as getText() for EditText view objects. We identify a collection of approximately

100 such methods and use FlowDroid to analyze the data flow from these methods to extended

sink methods. In Figure 5, line 6 serves as the source (editTextInput.getText()), and line 7 is the

sink (fileOutputStream.write(text.getBytes()), where the user input flows to the file.

Figure 4. Overview of configuring View elements as sources for information flow analysis

The next stage of the analysis is Object Backtracking to ID. Here, we track the view object

(editTextInput), on which the source method is invoked, to locate the corresponding

findViewById() call and identify the ID associated with it. In our example, tracking

editTextInput leads us to line 3, where the ID associated with it is IdOfView. In some cases,

the ID is a constant value, but more often, the ID is an integer variable. Therefore, a further

analysis step, depicted in Figure 4 as ID Backtracking to Value, is required to determine the

value of the variable. In our example, the goal is to track IdOfView back to its value. As

illustrated, the ID originates from the return value of the method integerID(), which is

defined in line 10 and returns the constant value 100. Finally, after obtaining the constant integer

value, we conduct a GUI Analysis (as shown in Figure 1), which involves mapping the integer

ID back to the corresponding entry in the R.java class. This class serves as a bridge between

Java code and the layout XML file, allowing us to link the integer ID to the appropriate UI

element.

IADIS International Journal on WWW/Internet

98

Figure 5. Example code demonstrating the flow of user input from a View element (getText()) to a

sink (write()).

Own-code vs. external-code flows. Another crucial aspect of precise leak attribution is

distinguishing between own-code and external-code. Own-code is primarily identified by the

application package name. For example, in app com.gotokeep.yoga.intl.apk, all the code whose

package is com.gotokeep.* or com.gotokeep.yoga.* is considered own-code, whereas code in

packages io.branch.* or com.facebook.* is considered external-code. Of course, code in

package com.facebook.* would be considered own-code in the Facebook app itself.

3. RESULTS

App dataset. We ran our approach on 2,832 Android apps: 2,211 from Google Play’s Medical

category and 621 from Google Play’s Health&Fitness category. We used two criteria for

including apps in our analysis: (1) a minimum popularity threshold (≧ 500 installs), and (2) the

apps had to be in English.

3.1 What is the Prevalence of PI Collection?

Figure 6 shows the prevalence of PI collection. We found that Email is by far the most collected

information, with 44% of Health&Fitness apps (`Fitness’ for short), and 39% of medical apps

collecting it, respectively. Next, we found that Age, Name (first, last), Phone number, Address,

Gender, Height, are collected by about 15%–20% of the apps. As expected, the collection of

specialized medical information (e.g., current medications, medical history, use of

smoking/alcohol) is more prevalent in medical apps. However, we were surprised to see that

fitness apps have a comparatively higher prevalence of collecting identity information such as

email, weight, age, gender, height, compared to medical apps.

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

99

Figure 6. Prevalence of PI collected

3.2 Own-Code vs. External-Code Leaks

We begin with two motivating examples that illustrate the difference between own- and

external-code leaks

Motivating example: Own-code leak. The mental health app Panic Shield

(com.panic.shield) is designed to protect users from panic attacks. The list of user phobias,

labeled fear8name, is among the PI it collects; the app collects this information via an EditText

and stores this information in the local SharedPreferences database. The result of flow tracking,

that starts at the source and ends at the sink, indicates the methods and VM registers involved

in the flow:

SOURCE

$r1=virtualinvoker0.<com.panic.shield.exposure.CreateHierarchy:android.view.View

findViewById(int)> ⇒

$r23 = r0.<com.panic.shield.exposure.CreateHierarchy: java.lang.String l> ⇒

Interfaceinvoke $r25.<android.content.SharedPreferences$Editor:

android.content.SharedPreferences$Editor

putString(java.lang.String,java.lang.String)>("fear8name", $r23) SINK

We consider this a own-code leak since all the code involved belongs to the app (or Android

itself).

Motivating example: external-code leak. The Keep Yoga fitness app

(com.gotokeep.yoga.intl) collects the user’s gender (encoded as a boolean) and uses the

io.branch external-code library, which will store the gender in the local SharedPreferences

database. The result of flow tracking is:

IADIS International Journal on WWW/Internet

100

 SOURCE

r11 = virtualinvoke $r6.<android.app.Activity: android.view.View findViewById(int)>($i0) ⇒

$r1 = <io.branch.referral.PrefHelper: io.branch.referral.PrefHelper prefHelper_> ⇒

putBoolean(java.lang.String,boolean)>($r1, $z0) SINK

Note how in the flow from collecting the user’s gender (source) to storing it in the database

(sink), there is a method from the io.branch external-code library. This library is primarily used

for deep linking and user engagement (Table 3). The presence of third-party methods, such as

those from io.branch, makes this external-code flow. Note how external-code flows increase the

risk of data leakage: the data, once handled by external-code, can be stored locally but also

potentially shared with third-parties (Reardon et al., 2019). Therefore, this second leak scenario,

involving the sharing of data with external-code, is potentially more dangerous due to the

additional risk of exposing personal information to external entities.

Table 2. Leak statistics

 Own-code External-code

Median 6 29

Average 43.29 156.34
Max 978 2559

Table 2 shows statistical measures for leaks: we found that the typical app has 6 own-code

leaks and 29 external-code leaks (the average values are affected by apps that have a large

number of leaks, up to 978 own-code, and 2,559 external-code, as can be seen in the last row).

We believe that these results are concerning, especially from the standpoint of external-code

leaks. When the ratio of leaks induced by external-code libraries to an app’s own code is 29:6,

essentially the developer has long lost control over who collects user data, and how this data is

processed or sent.

Overall leaks. Figure 7 shows histograms for the overall number of leaks, as well as

own-code vs external-code leaks. The histogram on the left shows that 158 apps have less than

20 leaks. However, please note that, to be included in the figure, an app had to have at least one

leak. The histogram shows that dozens upon dozens of apps have a substantial number of leaks:

48 apps have 20–40 leaks, 25 apps have 40–60 leaks, and 128 apps have more than 100 leaks.

These numbers indicate that a high number of leaks is not an isolated incident; this provides an

impetus to find and analyze apps with a high number of leaks.

Figure 7. Leak distributions: overall (left) and own- vs -external code leaks (right)

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

101

Most prevalent external-code libraries. In Table 3 we show the nature and prevalence of

top external-code libraries. For example com.facebook (which implements analytics and social

media integration services) appears in 87 apps; io.fabric, which provides analytics, crash

reporting, and user engagement services, appears in 38 apps. Note that an app may contain more

than one of these external-code libraries, and there is a lot of fragmentation. While, for space

reasons, we only present the top-9 libraries, there are dozens of other external-code libraries that

we found in apps.

Table 3. Most frequent external-code libraries and their nature

 #Apps Ads Analytics Payment

Processing

Crash

reporting

User

engagement

Deep

linking

Authenti-

cation

Social

Media

Integration

com.facebook 87 • •

com.squareup 58 • •

io.fabric 44 • • •

io.branch 38 • •

net.hockeyapp 34 • •

com.crashlytics 28 • •

com.appboy 26 • •

com.mopub 24 •

com.applovin 20 • •

3.3 Where does the PI Leak?

We now discuss each leak destination, quantified in Table 4. Net indicates that the information

is leaked over the network; these leaks are the most concerning, because the moment the

information has left the phone, the user has de facto lost control over where the information

propagates. Please note that characterizing the network domain where information leaks to over

the network – e.g., the app’s own servers, or analytics/advertisers – is challenging and requires

a dynamic analysis (Wei et al., 2012). Log indicates that PI information is leaked to system logs;

this is problematic because system logs are visible to any app. Local DB/Bundles/Shared Pref

indicates that the information is leaked to local persistent storage (Bundle is the Android

serialization mechanism, and SharedPreferences store user preferences). File/IO indicates that

the PI is saved in local files. Note that leaks to local storage (DB, files) have been proven to be

used by malicious apps and malicious libraries to exfiltrate data (Reardon et al., 2019). The table

reveals that, depending on the destination, external-code leaks are 1.8x–11.9x more numerous

than own-code leaks. For brevity we omit showing the distribution for each destination,

however we found that apps that have own-code network leaks typically have few (<20),

whereas 40 apps had ≥ 20 network leaks (they are all external-code leaks).

Table 4. Leak destinations

 #Leaks % of overall leaks Own-code External-code

Net 11002 24.59 916 10086

Local DB/Bundle/SharedPrefs. 16595 37.08 3073 13522

Log 10325 23.07 3687 6638

File, I/O 6831 15.26 529 6302

IADIS International Journal on WWW/Internet

102

3.4 Fine-Grained PI Leak Analysis

Table 5 shows fine-grained results: the number of apps in each category that exhibit at least one

leak for that PI, as well as totals for each PI and each destination. Note that an app can have

multiple leaks of the same PI to the same destination, e.g., the Email is saved into two different

files, or sent onto the network via two different connections. In this subsection only, when

referring to “leaks” we count apps, not individual leaks; in other words, any app that has more

than one PI→destination leak is only counted once. Overall, Medical apps have about 3x more

leaks than Fitness apps (1490 vs. 510) in part due to medical apps collecting specific medical

PI; nevertheless, some Fitness apps still collect and leak medical PI such as medication, blood,

or smoking/alcohol use. Weight, Email, First Name, and Gender are the most frequently leaked

personal information in Fitness apps, while Email, Credit Card, Phone Number, and Address

are the most commonly leaked in Medical apps.

Interestingly, while 44% of Fitness apps collect the Email, only about 14% leak it (see Figure

1); whereas 39% of Medical apps collect the Email, and 34% leak it. Another interesting point

is that Fitness apps have a much higher tendency to collect and leak Weight and Height.

Interestingly, Fitness apps show a greater tendency to collect and leak data related to physical

attributes, such as Weight and Height, reflecting their focus on users' physical characteristics.

On the other hand, Medical apps are more likely to collect Credit Card information, along with

related personal information like Addresses and Phone Number, which are commonly used in

payment processing. A positive finding is that Social Security Number (SSN) were not leaked

in any of the analyzed applications. We also noticed that Medical apps have 2.5x more network

leaks than Fitness apps do (341 vs. 133), making them higher risk (and inviting more scrutiny)

than Fitness apps.

Table 5. Fine-grained PI leak information (#of apps exhibiting one or more leaks of that PI)

 Fitness Medical

 Net Log DB FileI/O Total Net Log Net FileI/O Total

Email 24 25 25 15 89 85 64 84 54 287

First name 11 7 10 7 35 16 13 30 23 82

Last name 10 6 7 5 28 18 18 33 20 89
Phone 6 3 4 4 17 46 25 60 44 175

Address 5 12 11 4 32 33 35 78 30 176

Zip 5 3 4 3 15 11 11 14 8 44

Gender 8 8 13 5 34 15 15 18 7 55
SSN 0 0 0 0 0 0 0 0 0 0

CCard 9 8 8 5 30 52 33 92 52 229

Age 4 9 3 2 18 15 20 18 11 64

Weight 28 34 34 19 115 7 17 16 6 46
Height 8 10 9 4 31 4 8 11 4 27

Medical hist. 5 4 6 4 19 18 25 31 12 86

Medication 3 3 3 2 11 15 22 27 11 75

Blood 3 3 3 2 11 9 5 8 2 24
Mental health 3 7 8 2 20 6 8 10 3 27

Smoke/Alcohol 1 1 3 0 5 1 0 3 1 5

Total 133 143 151 83 510 341 319 533 288 1490

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

103

3.5 Frequency of Personal Information Leaks Across Apps

In this section, we examine the occurrence of personal information (PI) leaks across various

apps. Figure 8 illustrates the distribution of PI leaks by frequency. Notably, approximately 50%

of the apps exhibit a single PI leak, with the most commonly leaked PIs being Email, Medical

History, and Address. Around 22% of the apps leak two PIs, with the combinations (Address,

Credit Card), (Height, Weight), and (First Name, Last Name) being the most frequent pairs. For

apps leaking three PIs, the most prevalent groupings are (Credit Card, Email, Phone) and (Email,

First Name, Last Name). In instances where apps leak between four and nine PIs, no consistent

pattern emerges. The leaked information varies significantly from one app to another, indicating

less predictability in the types of information exposed when multiple PIs are involved.

Figure 8. Frequency distribution of personal information (PI) leaks by the number of

PIs leaked per app

Figure 9 illustrates the presence of each pair of leaked personal information (PI) across the

apps, showing how frequently these PI pairs are exposed. Notably, Credit Card appears in three

out of the five most frequently leaked pairs, occurring in more than 40 apps. The PIs associated

with Credit Card, such as Email or Phone Number, likely play a role in payment processing,

serving as contact information for payment notifications or identification. Additionally, First

and Last Name are commonly leaked alongside Credit Card, reflecting their relevance as the

cardholder's name. Address is often included as well, typically for billing or shipping purposes.

In 43 apps, both First and Last Name were leaked together, which is unsurprising. Furthermore,

Email, either independently or in combination with these names, was leaked in 30 apps. The

remaining leaked PI pairs also offer valuable insights and warrant further investigation.

IADIS International Journal on WWW/Internet

104

Figure 9. Frequency of PI pairs across apps

3.6 Characterizing Network Links

Section 3.3 and Table 4 have indicated that 24.59% of the leaks were to the network. However,

that does not indicate which entity the app is communicating with, over the network. When apps

send or receive data, knowing the destination (or origin) of this data helps us determine the

nature of the app, the nature of the communication, and potential areas of concern. Furthermore,

it can also help the end-user track what websites or services are receiving their data or help

prevent misuse of that data. To address this issue we analyzed links, specifically the URLs

embedded in apps, and then devised a characterization of these links.

Extracting links. To extract links, we first decompiled the app using the JADX (JADX,

2024) and apktool (Apktool, 2024) decompilers, extracted all the URLs found in the decompiled

version, and finally categorized the links. When classifying links, we grouped them into one of

four classifications: first-party, third-party, advertising, and Google APIs. Our data, displayed

in Table 6, shows that Google APIs are the most popular links (46.51%), followed by

third-party links (37.64), then first-party links (11.79%).

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

105

Table 6. Link categories and their prevalence

Statistic First-party Third-party Advertising Google APIs

Total 16872 53835 5786 66516

Percent 11.79 37.64 4.04 46.51

First Party. These links indicate communication between the app and its own servers. To

identify first-party links, we matched the URL’s domain name to a subsection of the app’s

package name; if there was a match, the link would be classified as first-party. For example,

links to ‘www.logbox.co.za’ were considered first-party when accessed in app ‘za.co.logbox’.

Google APIs. These links indicate the use of Google services, e.g., Firebase storage,

`Sign-in with Google’, etc. We identify such links based on the URL containing

googleapis.com. Note that some Google API links could be advertising

(‘www.googleapis.com/auth/display_ads’).

Advertising. We deemed links as advertising if they point to known advertising providers,

i.e., the URLs contained the domains: ‘amazon.com’, ‘facebook.com’, ‘aboutads.info’,

‘shoppable.com’, ‘supersonicads.com’, ‘googleadservices.com’, ‘kargo.com’, ‘appsfire.com’,

‘nativex.com’ and ‘tapestrylabs.com’, etc.

Excluded Links. Apps contain an abundance of links to Web standards, and Web

frameworks, e.g., ‘www.w3.org’ or government reference material (‘www.<resource>.gov’ or

`www.<resource>.gov.>country>). We excluded these links from the analysis as we considered

them to be routine/innocuous – simply an artifact of the apps using the Web. Moreover, when

apps connect to these URLs, they generally do not send user data.

Most Prevalent Link classifications. Figure 10 shows the number of links found in each

app. The average app has 60.52 embedded links across all classifications; the geometric mean

for all classifications was 25.12. Overall, out of 2,831 apps studied, 468 apps had no

categorizable/valid links, 318 had 1–20 links, 704 had 20–40 links, 229 had more than 100 links,

and 9 had more than 1000; these figures illustrate the breadth of app communication and the

variety of URLs apps exchange data with.

Figure 10. Links per app distribution

IADIS International Journal on WWW/Internet

106

Most link-heavy apps. Table 7 shows the top-ten apps with the most links for each

classification. The app with the highest number of overall links was

org.iggymedia.periodtracker, with 9574 third-party links, and 168 known advertising links. The

most common domains in this app were webmd.com, babycenter.com, and healthline.com. The

app with the highest number of first-party links was webmd.com, with 8,598 first-party links,

which we attribute to WebMD being a reference app. App infirmiers.pro had the highest number

of advertising links (1498, which is a quarter of all advertising links in our 2832 app dataset).

Table 7. Top-10 apps with the most embedded links

 Most Link-Heavy Apps & their

Classifications

APK Name First-

party

Third-

party

Advertising Google

APIs

Top 3 Most common

Links

org.iggymedia.periodtracker 0 9574 168 31 webmd.com

babycenter.com

healthline.com

com.webmd.android 8598 12 2 53 *.webmd.com
googleapis.com

 www.idangero.us

com.WegileWildCard.transform 0 5744 1 53 dropbox.com

googleapis.com
gravatar.com

infirmiers.pro 0 514 1498 31 facebook.com

googletagmanager.com

googleapis.com
com.phillips.cdp.ohc.tuscany 392 1129 1 17 *.philips.*

nakupovanje.net

googleapis.com

com.lf.lfvtandroid 0 1472 1 45 youtube.com
googleapis.com

lifefitness.com

gov.va.general.med.ee 1287 20 0 22 *.va.gov

googleapis.com
nap.edu

wikem.chris 0 1257 18 18 youtube.com

mdcalc.com

 thepocusatlas.com
uk.co.classprofessional.cpg 18 1031 0 1 *.community.librios.com

evidence.nhs.uk

gravatar.com

 com.bracemateapp.bracemate 29 623 0 1 dropbox.com
google.com

youtube.com

Table 8 shows that a typical Medical app communicates with 27 URLs, whereas a typical

Health&Fitness app communicates with 39 URLs. Table 9 shows statistics on links, separated

by their classifications. A typical Medical app has 3 first-party links, 7 third-party links,

2 advertising links, and 24 Google API links. In contrast, a typical Health&Fitness app has 4

first-party links, 9 third-party links, 3 advertising links, and 29 Google API links. This data

suggests that Health&Fitness apps have a higher inclination to communicate data to the URLs.

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

107

Table 8. Statistics by app Category

Statistic Medical Health And Fitness

Max 2043 9773

Average 41.68 124.91

Geometric Mean 21.7 41.57
Median 27 39

Table 9. Statistics by link category

Health And Fitness Apps

Statistic First-party Third-party Advertising Google APIs

Max 8598 9574 168 234
Average 103.75 53.63 4.34 59.34

Geometric Mean 5.47 9.41 2.71 28.48

Median 4 9 3 29.5

Medical Apps

Statistic First-party Third-party Advertising Google APIs

Max 1288 1257 1498 231

Average 17.84 15.14 4.06 29.47

Geometric Mean 3.98 6.26 2.16 20.19
Median 3 7 2 24

3.7 Characterizing the UI elements that collect PI

In total, our apps contain 47,749 Android View objects (i.e., GUI elements) that collect PI.

Figure 11 shows the View types, along with the semantics of the PI they collect. For each type,

we also indicate the top-3 most frequent PI that is collected with that View. The most prevalent

UI object is EditText (50.8%) which allows arbitrary text input. Naturally, EditText is used to

collect emails, addresses, first names, and so on. However, the flexibility of EditText can be a

downside as well, when the information collected needs to have a certain type (e.g., numeric)

or range, e.g., 0–100; in such cases, developers need to add input validation, whereas other

controls, e.g., Spinner or SeekBar, can directly enforce a certain discipline on values or ranges.

RadioButton and CheckBox are tied for the second most frequent PI collectors, typically used

to select the gender, an age range, or a list of medications/medical conditions.

IADIS International Journal on WWW/Internet

108

Figure 11. UI element distributions and the PI they collect

3.8 Discussion

We believe that (1) such apps should move toward collecting and leaking less, and (2) users,

developers, app markets, and regulators can all play a role. First, users should question

developers’ over-collection, e.g., an app that simply computes the BMI should just ask for

weight and height, and not ask for the user’s medical history. Second, as developers typically

use third-party code for monetization (ads), they should balance revenue with the leaks that

third-party code induces; similarly, users can put pressure on developers to reduce ads and leaks.

Third, app markets can be more transparent about the data apps collect, e.g., offer a detailed

description of the data collected, and where this data is stored/sent. Fourth, regulators should be

much more aggressive in enacting measures to make apps transparent about collection, and

protective of user data.

4. TOOL: PERSONAL INFORMATION TRACKER

Our approach is implemented in a tool called PIT (Personal Information Tracker), which, along

with its documentation, is publicly available on our GitHub repository at github.com/Alireza-

Ardalani/PIT. By default, PIT supports 17 types of personal information as sources and tracks

4 types of sinks: logs, network, database (DB), and input/output (IO) operations. However, PIT

can be customized to accommodate other types of sources and sinks through a configurable

setup. Figure 12 illustrates the output generated by the PIT tool when applied to the

com.phr.PayNow application. In this representation, each type of personal information is shown

as a label inside a square, while each sink type is depicted within a circle. The edges represent

the flow of personal information to its corresponding sink, with red edges indicating

external-code data flows and green edges representing own-code flows.

https://github.com/Alireza-Ardalani/PIT

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

109

Figure 12. Output of PIT for com.phr.PayNow app

5. CONCLUSIONS AND FUTURE WORK

Our study has revealed that Medical, as well as Health&Fitness apps, collect and leak a plethora

of personal information. We believe that our work could be extended along several directions.

First, a dynamic analysis that captures the destination of PI would provide a more precise

temporal dimension of when data is collected, and how often it is transmitted to the network.

Second, our current toolchain runs locally; we envision it could be extended to collect and report

data for a given individual app to the end-users as a browser extension or directly on the phone.

Finally, our analysis could be combined with a policy analysis to determine (and inform users)

of app compliance with privacy regulations such as the GDPR in the EU or CCPA in California.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This material is based upon work

supported by the National Science Foundation under Grant No. CCF-2106710.

REFERENCES

Ardalani, A., Antonucci, J. and Neamtiu, I., 2024. Towards Precise Detection of Personal Information

Leaks in Mobile Health Apps. 18th IADIS International Conference on e-Health (part of MCCIS 2024).

Budapest, Hungary.

Arzt, S., et al., 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware

Taint Analysis for Android Apps. ACM SIGPLAN Notices, Vol. 49, No. 6.

Apktool, 2024. A tool for reverse engineering Android APK files. Available at:

https://ibotpeaches.github.io/Apktool/

Continella, A., et al., 2017. Obfuscation-Resilient Privacy Leak Detection for Mobile Apps Through

Differential Analysis (Report for NDSS Symposium 2017). Available at:

https://publik.tuwien.ac.at/files/publik_278933.pdf

https://publik.tuwien.ac.at/files/publik_278933.pdf
https://publik.tuwien.ac.at/files/publik_278933.pdf

IADIS International Journal on WWW/Internet

110

HIPAA, 2024. US Department of Health & Human Services: Guidance Regarding Methods for

De-identification of Protected Health Information in Accordance with the Health Insurance Portability

and Accountability Act (HIPAA) Privacy Rule. Available at: https://www.hhs.gov/hipaa/for-

professionals/privacy/special-topics/de-identification/index.html#protected

Huang, J., et al., 2015. SUPOR: Precise and Scalable Sensitive User Input Detection for Android Apps.

Proceedings of the 24th USENIX Security Symposium (SEC'15). USENIX Association, USA,

pp. 977-992.

JADX, 2024. Dex to Java Decompiler. Available at: https://github.com/skylot/jadx

Jia, Q., et al., 2019. Who Leaks My Privacy: Towards Automatic and Association Detection with GDPR

Compliance. In E. Biagioni, Y. Zheng and S. Cheng (eds.) Wireless Algorithms, Systems, and

Applications. WASA 2019. Lecture Notes in Computer Science, vol 11604. Springer, Cham.

https://doi.org/10.1007/978-3-030-23597-0_11

McClurg, J., Friedman, J. and Ng, W., 2013. Android Privacy Leak Detection via Dynamic Taint Analysis.

Available at: https://jrmcclurg.com/papers/internet_security_final_report.pdf

Rahaman, S., Neamtiu, I. and Yin, X., 2021. Algebraic-datatype Taint Tracking, with Applications to

Understanding Android Identifier Leaks. ESEC/FSE 2021: Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. Athens, Greece, pp. 70-82.

Reardon, J., et al., 2019. 50 Ways to Leak Your Data: An Exploration of Apps' Circumvention of the

Android Permissions System. Proceedings of the 28th USENIX Security Symposium, pp. 603-620.

Available at: https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

Ren, J., et al., 2016. ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic. MobiSys

'16: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and

Services, pp. 361-374. Available at: https://dl.acm.org/doi/abs/10.1145/2906388.2906392

Samat, S., 2022. Living in a Multi-device World with Android. Available at:

https://blog.google/products/android/io22-multideviceworld/

SuSi, 2024. Available at: https://github.com/secure-software-engineering/SuSi

Sweeney, L., 2000. Simple Demographics Often Identify People Uniquely (Data Privacy Working Paper

3). Available at: https://dataprivacylab.org/projects/identifiability/paper1.pdf

Van Alstin, C., 2024. Massive Data Trove from Change Healthcare Hack Now for Sale on Dark Web,

Health Exec. Available at: https://healthexec.com/topics/health-it/cybersecurity/massive-data-trove-

change-healthcare-hack-now-sale-dark-web

Wei, X., et al., 2012. ProfileDroid: Multi-layer Profiling of Android Applications. Mobicom '12:

Proceedings of the 18th annual international conference on Mobile computing and networking,

pp. 137-148.

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html#protected
https://github.com/skylot/jadx
https://jrmcclurg.com/papers/internet_security_final_report.pdf
https://dl.acm.org/doi/abs/10.1145/2906388.2906392
https://github.com/secure-software-engineering/SuSi
https://healthexec.com/topics/health-it/cybersecurity/massive-data-trove-change-healthcare-hack-now-sale-dark-web

