
IADIS International Journal on Computer Science and Information Systems
Vol. 19, No. 2, pp. 87-101
ISSN: 1646-3692

87

CASE STUDY IN GENERATIVE ADVERSARIAL
NETWORKS FOR TEXTILE PATTERNS
GENERATION

Diogo Araújo1, Rita Gomes2, Ivan Gomes2, Luís Romero1 and Pedro Miguel Faria1
1Instituto Politécnico de Viana do Castelo, Portugal
2CITEVE – Textile and Clothing Technology Centre, Portugal

ABSTRACT

This study focuses on the implementation and evaluation of generative models for the generation of textile
designs using Generative Adversarial Networks (GANs). The approach involved developing both
unconditional and conditional versions of Wasserstein GANs (WGANs) and Wasserstein GANs with
Gradient Penalty (WGAN-GP), as well as adaptations for higher resolution outputs. A diverse dataset of
13,000 textile patterns was compiled, and the models were trained on this data, with architectures designed
to optimize image generation in terms of both resolution and feature learning. The training process was
analyzed using loss stability assessments, visual evaluation, and accuracy metrics. Results showed that
WGAN-GP models demonstrated greater loss stabilization but lower overall accuracy since the
discriminator learned faster, while conditional models showed improvement in image fidelity but with
some divergence issues during training. Additionally, efforts to upscale output resolution to 256x256 pixels
were largely unsuccessful, with significant loss oscillations and poor constructed generated samples. This
study concludes with recommendations for further refinement of the model architectures and training
strategies to improve the generation of high-quality, high-resolution textile designs.

KEYWORDS

Textile Pattern, Textile Design, Generative AI, GAN, Conditional GAN

1. INTRODUCTION

The work described here is part of the TEXP@CT project, in the context of the work package
on Digital Product and particularly Digital Tools for Creativity. The textile industry, often
regarded as a bastion of creativity and artistry, is undergoing a transformative shift into the
realm of knowledge-driven enterprises (Samia et al., 2022; Karegowda et al., 2024). While the
artistic aspect of textile design remains paramount, the industry increasingly relies on
technology, allocating substantial resources to stay at the forefront of innovation. The

IADIS International Journal on Computer Science and Information Systems

88

integration of digital tools, crafted by seasoned professionals, has become a defining feature of
this evolution (Mishra et al., 2024). In this dynamic landscape, machine learning emerges as a
powerful catalyst for change, offering an avenue to understand and replicate intricate design
patterns. Machine learning, as a discipline, revolves around the identification of patterns within
selected data to predict outcomes or generate new material. Recent advancements in technology
and processing power have catapulted machine learning into various applications, spanning data
classification, statistical analysis, image recognition, and the development of intricate systems.
One notable offshoot of machine learning, deep learning, relies on artificial neural networks to
unravel complex patterns (Dwivedi et al., 2016; Li, 2024). This includes specialized neural
network architectures such as convolutional neural networks (CNN), generative adversarial
networks (GAN) and recurrent neural networks (RNN), each designed to excel in specific
applications. Generative Adversarial Networks (GAN) are based on neural networks used for
the generation of images (Goodfellow et al., 2014). It mainly consists of two parts, a generator
and a discriminator or critic. The generator generates images through latent space and noise as
its weights. These generated images are passed onto a discriminator which compares the
generated images with the real images and calculates the error/loss value. These loss functions
are passed onto the generator and discriminator to fine-tune according to loss function to
produce better images and making better predictions.

A method of textile image generation using Wasserstein Generative Adversarial Networks
(WGAN) (Weng, 2019) and Wasserstein Generative Adversarial Networks with Gradient
Penalty (WGAN-GP) (Gao, 2020) is introduced. According to our knowledge, few algorithms
exist that are dedicated to generating proper textile patterns, resulting in the need for testing and
evaluation of current models, and fine-tuning them. We have compared the performance of 2
image generative algorithms such as WGANs (Weng, 2019; Arjovsky et al., 2017a),
WGANs-GP (Gao, 2020) and added the concept of conditionality through the embedding of
categories/classes. These models were chosen because they represented significant
advancements in the field of Generative Adversarial Networks (GANs) and have addressed
some of the limitations associated with traditional GANs, such as:

 Stability and Convergence: Where WGAN addresses the issue of training instability and
mode collapse that can be observed in traditional GANs. It introduces a more stable
training procedure by replacing the Jensen-Shannon divergence with the Wasserstein
distance in the objective function.

 Wasserstein Distance: The use of Wasserstein distance allows for a more meaningful and
continuous measure of the difference between the generator and real data distributions.
This helps prevent gradients from disappearing or exploding during training.

 Gradient Penalty: While WGAN improves stability, WGAN-GP further refines the
training process by incorporating a gradient penalty. The gradient penalty addresses the
problem of weight clipping used in WGAN, which can lead to suboptimal convergence.
WGAN-GP penalizes the norm of the gradient of the critic (discriminator) with respect
to its input, enforcing smoother convergence.

 Mode Collapse Mitigation: WGAN-GP has been observed to be less prone to mode
collapse, when compared to some traditional GAN formulations. Mode collapse occurs
when the generator collapses to produce a limited set of similar samples.

This article is divided into five sections: the present one which introduces the study carried
out, followed by a section of related work about some utilities of the GANs, possible activities
in the range of image manipulation and some case studies of GANs, in the textile pattern
generation; then the implementation section describes a prepared dataset and explains the

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

89

process of building a GAN model and its conditionalization; the next section refers to the
analysis of obtained results, through visual and loss stability assessments; and the last section
indicates some conclusions about the study presented here.

2. RELATED WORK

Extensive research has been done in the field of GANs from generating simple images as simple
as generation of bird images (Huang, 2018) to more complex subjects such as medical studies
(Cepa et al., 2023) and complex designs (Liu et al., 2020). In the last few years, the evolution
of machine learning algorithms and deep learning methods has resulted in different applications
and has shown great results in many industries (Li, 2023). In general, the generative model can
perform tasks like reasoning, density estimation, and sampling. The generation model can be
separated into unconditional generation and conditional generation, based on the various inputs
(Yoshimura and Kasahara, 2016). Image synthesis is an important research area within the field
of computer vision (Yi et al., 2023). Its primary purpose is to transform images between
different image domains, including applications such as image super-resolution generation,
image coloring, image filling, style transformation, and attribute transformation. (Aittala et al.,
2016) uses CNN to learn the mapping between input images and output images, and (Ren et al.,
2017) decomposed the hidden space of an image into a domain-invariant content space and a
domain-specific style space and obtained multimode output. A deep network model based on
edge enhancement is proposed for image super-resolution reconstruction, and a deconvolution
network is used to achieve the goal of edge enhancement.

Considering textile design, (Yar et al., 2023) introduces the use of Generative Adversarial
Networks (GANs), leveraging the image generation capabilities of GANs, the study curates a
dataset of 17,000+ textile design images, categorized by design class. The authors employ a
Deep Convolutional GAN (DCGAN) to collectively generate patterns and fine-tune it for
specific pattern types, such as cheetah. The study claims three main contributions: dataset
collection and classification, the introduction of GANs in textile design, and the training of a
versatile DCGAN for efficient pattern generation. As for (Fayyaz et al., 2020), the study
proposes an innovative approach to automated textile design pattern generation using generative
models, claiming that the accuracy of classifying textile design patterns is enhanced by 2%,
through data cleaning and pseudo labelling. Performance comparisons among Wasserstein
Generative Adversarial Networks Gradient Penalty (WGANs GP), Deep Convolutional GANs
(DCGANs), and Convolutional Variational Autoencoders (CVAEs) are conducted on a dataset
for individual classes, assessed using the inception score.

3. IMPLEMENTATION

An experimental study was carried out. First, it was necessary to acquire and process data related
to the problem of generating textile designs. Then, the desired algorithms were implemented,
and an architecture was built, in order to be able to train the models.

IADIS International Journal on Computer Science and Information Systems

90

3.1 Data Acquisition

Before we started the process of textile patterns image generation, we had the need for a data
set about textile patterns. We used a dataset made from different sources such as TexGan
(Yar et al., 2023), clothing-pattern-dataset (Alexander et al., 2021) and some hand-picked
images from sources such as Freepik, Shutterstock and Vecteezy. The dataset consists of 13,000
images, divided by categories, as exemplified in Figure 1.

Figure 1. Four pattern examples, from the dataset, for the floral and abstract categories

The dataset was built using images of different resolutions, and we pre-processed all images
before feeding the data models. As the images were loaded, we resized them to 64×64 pixels
dimension and established the color channels as 3 (RGB), due to the lack of some computational
power, to experiment with larger images.

3.2 Base Algorithms

For the purpose of this study, the developed models were based on the proposed algorithms
represented in Figure 2, from (Arjovsky et al., 2017b), and represented in Figure 3 from
(Gulrajani et al., 2017). Some considerations were also based on (Soumith and Denton, 2017)
GAN-hacks.

Following Figure 2, for each step the generator takes, during the training process, the
discriminator will take n steps. As in basic GANs, we take the latent noise sample and the dataset
sample to compute the gradient. RMSProp is the optimizer used and it is applied to the clipping
technique, which clips every weight parameter in the network to be conformed within a certain
range. Then the generator is trained, computing the gradient, and using the same optimizer.

Following Figure 3, for each step the generator takes, during the training process, the
discriminator will take n steps. Instead of clipping, it is introduced the concept of gradient
penalty where it is added the interpolation of the generated sample and the dataset sample, and
computed the norm of the gradient, which is desired to be approximately 1 for every
interpolation, to satisfy the Lipschitz constraint. The optimizer used in this case is Adam.

Simply put, the biggest differences between the algorithms are the introduction of clipping
and gradient penalties that attempt to enforce the Lipschitz condition differently, and the
difference between optimizers.

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

91

Figure 2. WGAN proposed algorithm (Arjovsky et al., 2017b)

Figure 3. WGAN-GP proposed algorithm (Gulrajani et al., 2017)

3.3 Wasserstein Generative Adversarial Network (WGAN)

Based on the WGAN algorithm structure, we developed a Wasserstein Generative Adversarial
Network model, where a specific generator and discriminator architecture was structured, taking
into consideration that the generator will enlarge a certain input and try to construct features,
while the discriminator will shrink the input, trying to detect features. As defined in the
algorithm, the optimizer used was RMSprop and for each discriminator iteration, we clamped
the weight clip of 0.01.

3.3.1 Generator Architectures

The generator architecture has 4 deconvolutional blocks (deconvolutional layer, normalization
and ReLU activation function) and a final deconvolutional layer with ReLU activation function.
Each deconvolutional layer has an input (number of channels in the image), output (produced
number of channels), kernel size (convolving kernel size), stride (for cross-correlation), padding

IADIS International Journal on Computer Science and Information Systems

92

and bias. During the generation process, the generator takes and goes through the following
number of channels (initial noise, 1024), (1024, 512), (512, 256), (256, 128) and (128, 64). The
kernel size, stride, padding and bias are set as 4, 2, 1, false.

3.3.2 Discriminator Architectures

The discriminator architecture has an initial convolutional layer with LeakyReLU activation
function, 3 convolutional blocks (convolutional layer, normalization and LeakyReLU activation
function) and a final convolutional layer. Each convolutional layer has an input (number of
channels in the image), output (produced number of channels), kernel size (convolving kernel
size), stride (stride of the convolution), padding and bias. During the discrimination process, the
discriminator takes and goes through the following number of channels (64, 64), (64, 128), (128,
256), (256, 512) and (512, 1). The kernel size, stride, padding and bias are set as 4, 2, 1, false.

3.4 Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP)

Based on the WGAN-GP algorithm structure, we developed a Wasserstein Generative
Adversarial Network with Gradient Penalty model, where a specific generator and discriminator
architecture was structured. As established in the algorithm, the optimizer used was Adam with
betas of (0.0, 0.9). and for each discriminator iteration, we calculated the gradient penalty
through the interpolated images and respective mixed scores, ending up multiplied by 10 and
added to the discriminator loss.

3.4.1 Generator Architectures

The generator architecture has 4 deconvolutional blocks (deconvolutional layer, normalization
and ReLU activation function) and a final deconvolutional layer with ReLU activation function.
Each deconvolutional layer has an input (number of channels in the image), output (produced
number of channels), kernel size (convolving kernel size), stride (for cross-correlation), padding
and bias. During the generation process, the generator takes and goes through the following
number of channels (initial noise, 1024), (1024, 512), (512, 256), (256, 128) and (128, 64). The
kernel size, stride, padding and bias are set as 4, 2, 1, false.

3.4.2 Discriminator Architectures

The discriminator architecture has an initial convolutional layer with LeakyReLU activation
function, 3 convolutional blocks (convolutional layer, normalization and LeakyReLU activation
function) and a final convolutional layer. Each convolutional layer has an input (number of
channels in the image), output (produced number of channels), kernel size (convolving kernel
size), stride (stride of the convolution), padding and bias. During the discrimination process, the
discriminator takes and goes through the following number of channels (64, 64), (64, 128), (128,
256), (256, 512) and (512, 1). The kernel size, stride, padding and bias are set as 4, 2, 1, false.

3.5 Conditional WGAN and Conditional WGAN-GP

Following the models i.e., basic conditional adaptations of the models were developed. For
these, we introduced categories/classes, as each image in the dataset belongs to a class such as

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

93

Floral, Geometric, Cultural, Abstract, etc. Concerning the generator and discriminator
Architectures, for this case, we kept both models’ architectures i.e., but we embedded the
existing classes of the dataset and added the respective class of each image, into the generator
and discriminator. This way, both Generator and Discriminator will take into consideration this
new characteristic.

3.5.1 Generator Architectures

Both models keep the same generator architecture, while implementing little alterations for the
embedding. The embedding takes the classes and the embedding dimension and embeds in each
image the labels, creating a new tensor, and with the objective of learning to generate more
specific images guided by the label. During the generation process, the generator takes and goes
through the following number of channels (initial noise + embedding dimension, 1024), (1024,
512), (512, 256), (256, 128) and (128, 64).

3.5.2 Discriminator Architectures

Both models keep the same discriminator architecture, while implementing little changes for
the embedding. In this case, the embedding follows basically the same structure as in the
generator and tries to associate the label with the extracted characteristics. During the
discrimination process, the discriminator takes and goes through the following number of
channels (64 + 1, 64), (64, 128), (128, 256), (256, 512) and (512, 1).

3.6 Conditional WGAN with 256x256 Output

According to the Conditional Wasserstein Generative Adversarial Network model i.e., we made
some adaptations for the 256x256 resolution output instead of 64x64 as per the other 4 models.
Considering that the amount of time needed for training grows exponentially based on the
resolution and characteristics/features, we experimented with 2 different sets of values (normal
and lowered sets).

3.6.1 Generator Architectures

The generator architecture follows the same pattern as the 64x64 conditional WGAN, with the
addition of 2 extra blocks. During the generation process, for the lowered set, the generator takes
and goes through the following number of channels (initial noise + embedding dimension, 256),
(256, 128), (128, 64), (64, 32), (32, 16), (16, 8) and (8, 4). For the normal set, the generator
takes and goes through the following number of channels (initial noise + embedding dimension,
1024), (1024, 512), (512, 256), (256, 128), (128, 64), (64, 32) and (32, 16).

3.6.2 Discriminator Architectures

The discriminator architecture follows the same pattern as the 64x64 conditional WGAN, with
the addition of 2 extra blocks. During the discrimination process, for the lowered set, the
discriminator takes and goes through the following number of channels (64 + 1, 8), (8, 16),
(16, 32), (32, 64), (64, 128), (128, 256) and (256, 1). For the normal set, the discriminator takes
and goes through the following number of channels (64 + 1, 16), (16, 32), (32, 64), (64, 128),
(128, 256), (256, 512) and (512, 1).

IADIS International Journal on Computer Science and Information Systems

94

3.7 Training Hyperparameters and Resources

Several hyperparameters were defined for every model with the output of 64x64 resolution.
The computational resources consisted of a laptop with a professional mobile graphics chip by
NVIDIA: Quadro RTX 4000 MAX-Q Design, a mobile processor with 8 cores: Intel I7-10875H
and 32GB RAM. In terms of functional hyperparameters, we defined the necessary ones as
follows:

 Learning rate = 5e-5
 Batch size = 64
 Image size = 64
 Color channels = 3
 Noise dimension = 100
 Discriminator characteristics = 64
 Generator characteristics = 64
 Discriminator iterations = 5
 Number of cycles = 200
 Embedding noise dimension = 100
After the initial experiments, we had some issues with the computational resources, so we

transferred the models to a new laptop with the Apple M3 Pro chipset model and 32GB RAM.
With these new resources we trained a CWGAN model for the 256x256 output resolution.
As such, we decided to use the same hyperparameters, introducing only 2 changes:

 Image size = 256
 Number of cycles = 150

4. RESULTS ANALYSIS

Following, the training parameters i.e., for each epoch, the model weights were stored and can
be implemented to transfer learning. The results were evaluated through visual and loss stability
assessment.

4.1 Unconditional Models

For the base models (unconditional), where the models (WGAN and WGAN-GP) where trained
while ignoring any type of labeling, resulting in the generation of random images, we saved and
assessed the convergence of the generator and discriminator losses. We also tried to assess the
visual output to identify characteristics.

4.1.1 Loss Stability Assessment

Knowing that, in practical terms, optimizers try to minimize loss functions, we can compare the
performance of the discriminator and the generator. Therefore, an analysis was carried out on
the losses of each model throughout the training process, as observed in Figure 4. The
discriminator loss aims to maximize the mean of scores for real samples (encouraging correct
classification of real samples) and minimize the mean of scores for synthetic samples
(encouraging correct classification of fake samples). The generator loss aims to maximize the
mean of discriminator scores assigned to its synthetic samples, thereby encouraging the
generator to produce realistic samples that fool the discriminator.

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

95

Figure 4. Losses during training of both unconditional models

For the WGAN model, the losses gradually decreased over time, whoever the stabilization
seems lacking in comparison with the WGAN-GP model, where the convergence appears to be
cleaner and stable. This, however, does not mean that the results obtained are better. Even if we
consider that the WGAN-GP model had better stabilization, the discrepancy between the loss
values indicates that the Generator performed poorly, when compared to the Discriminator. This
means that, refinement is needed to reduce the discrepancy. Overall, both Generator and
Discriminator have done their job, and the accuracy calculated (probability of the synthetic
image being recognized as real) was on average 35% for the WGAN model, and 10% for the
WGAN-GP model.

4.1.2 Visual Assessment

Based on the performed training, Figure 5 shows 64 images generated by the models, after
training for 200 cycles. The first set of 32 images were generated by the WGAN model, while
the other set were generated by the WGAN-GP model.

Figure 5. The 32 generated images from each model

IADIS International Journal on Computer Science and Information Systems

96

From the beginning of this study, we expected that the lack of a higher resolution would
make the visual comparison, between the models, more complicated and less viable. As such,
taking into consideration that the images are 64x64, some generated examples, from both
models, appear to resemble some characteristics of the dataset, even if mostly hard to perceive,
as observed in Figure 6.

Figure 6. Synthetic and real samples using the WGAN model

4.2 Conditional Models

For the conditional models, where the models (WGAN and WGAN-GP) where trained, while
embedding labels that represent the category/class that each image belongs to, resulting in the
generation of images belonging to a specific category, we saved and assessed the convergence
of the losses and the visual outputs of some of the categories.

4.2.1 Loss Stability Assessment

For the Conditional WGAN model, as represented by Figure 7, the losses gradually decreased
over time, but the losses oscillations are not desirable. The accuracy calculated as an average of
40%. This indicates that the conditionalization made the accuracy go up by 5%, but still, the
accuracy is considerably low, which shows that there is a lot of room for improvement.

Figure 7. Losses during training of the CWGAN model

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

97

For the Conditional WGAN-GP model, represented in Figure 8, the losses presented an
unexpected behavior, where the generator loss started to increase and diverge, from the 50 cycle
forward. The main cause could be the fast decrease in discriminator loss, making the generator
unable to maintain the discriminator. As a result, the discriminator will easily identify the
synthetic images, as shown through the accuracy, which was also calculated with an output
always around 0%.

Figure 8. Losses during training of the CWAGAN-GP model

4.2.2 Visual Assessment

Figure 9 shows the generated images by the conditional models. The first set of 16 images were
generated by the Conditional WGAN model, while the other set by the Conditional WGAN-GP
model. The samples were generated by inputting the desired category, and as such, most of the
samples show some characteristics of the class they belong to, even if hard to perceive as it lacks
detail and resolution.

Figure 9. The 4 generated samples per selected class

IADIS International Journal on Computer Science and Information Systems

98

The first set of samples were easy to pick, since the generator didn't deviate much in quality.
As for the second set, the generator had a hard time generating consistent samples. This may be
caused by the training of the WGAN-GP model, where it showed some unexpected behavior,
as mentioned in the stability assessment. Figure 10 presents some synthetic and real images that
shows some levels of similarity.

Figure 10. Synthetic and real samples using the WGAN-GP model

4.3 Conditional WGAN 256x256

For the Conditional WGAN model with 256x256 output with both lower and normal values, we
followed the same training pattern as in the 64x64 model with some simple changes.

4.3.1 Loss Stability Assessment

As represented by Figure 11, the losses of the lower value model showed that the training did
proceed somewhat since there is convergence, even if the oscillation is severe. The generation’s
results were poor, but we expected that, since we had lowered the values.

Figure 11. Losses during training of the CWGAN (256x256) model with lower values

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

99

For the normal values, represented in Figure 12, the losses presented an unexpected
behavior, where both losses seemed stagnant. From these results we jumped into the generation
of samples to verify if the outputs were at least acceptable.

Figure 12. Losses during training of the CWGAN (256x256) model with normal values

4.3.2 Visual Assessment

Figure 13 shows the generated samples under the two sets of values i.e. The first set of 3 images
was generated by the lower set, while the other set was generated by the normal set of values.
With a higher resolution, while maintaining the same model structure, we expected the results
not to change much, compared to the 64x64 output with the normal values, but, as with the loss
assessment, the results were not acceptable.

Figure 13. The 3 generated samples per value set

The first set of samples where, even when we expected it to be bad, was not acceptable,
since we can actually try to recognize any features. As for the second set, the conclusion was
the same because the results were poor. Even considering that the output resolution was correct,
the overall experiment with 256x256 was a failure, because the generated samples did not
present any similarity in characteristics to the real samples.

IADIS International Journal on Computer Science and Information Systems

100

5. CONCLUSIONS

In this article, we implemented two models to solve the problem of unique textile pattern
generation. As the results show, both models were functional, but there is a lot to take into
consideration going forward. Using higher resolutions is quite necessary, if we want to do visual
assessments properly, which in this case we could not analyze any type of refined details. Also,
for both models, the losses absolute value gradually lowered, which is desired, but the
WGAN-GP model needs extra refinement so the Generator can keep up with the Discriminator.
Based on the accuracy calculated and the overall results, there is a long way to go until we reach
the desired performance. Based on the accuracy results, knowing that the conditionalization of
the WGAN model upgraded in average 5%, it indicated a positive value. Considering the
experimentation failure using the 256x256 resolution, we intend to retest the training, after
running some verifications on the architectures that seem to be wrongly built.

Since we lack computational resources for big experimentations, we will focus on a unique
category of pattern and change our approach into the problem, taking in consideration various
characteristics of the patterns such as composition, key elements, style, and padding, to verify
if it can further upgrade the performance of the model. Also fine-tuning, in general, is needed
for the aim of 90%+ accuracy and high-quality samples, for such we will completely change the
architecture of the generator and discriminator to fit the needs of the problem. We also intend
to get opinions from professionals in the field of textile design to better understand future results.

ACKNOWLEDGEMENT

This work has received financial support from integrated project TEXP@CT Mobilizing Pact –
Innovation Pact for the Digitalization of Textiles and Clothing (TC-C12-i01, Sustainable
Bioeconomy No. 02/C12-i01/202), promoted by the Recovery and Resilience Plan (RRP), Next
Generation EU, for the period 2021 – 2026.

REFERENCES

Aittala, M., Aila, T. and Lehtinen, J., 2016. Reflectance modeling by neural texture synthesis. ACM
Transactions on Graphics, Vol. 35, No. 4, 65.

Alexander, J. et al., 2017. Recognizing Clothing Colors and Visual Textures Using a Finger-Mounted
Camera. An Initial Investigation, Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility - ASSETS '17, pp. 393-394.

Arjovsky, M., Chintala, S. and Bottou, L., 2017a. Wasserstein GAN [online].
http://arxiv.org/abs/1701.07875

Arjovsky, M. Chintala, S. and Bottou, L., 2017b. Wasserstein Generative Adversarial Networks.
Proceedings of the 34th International Conference on Machine Learning - Proceedings of Machine
Learning Research, Vol. 70, pp. 214-223. Available at: https://proceedings.mlr.press/v70/
arjovsky17a.html

Cepa, B., Brito, C. and Sousa, A., 2023. Generative Adversarial Networks in Healthcare: A Case Study on
MRI Image Generation. 2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG), Porto,
Portugal, pp. 48-51. doi: 10.1109/ENBENG58165.2023.10175330

Dwivedi, A. K., Tirkey, A., Ray, R. B. and Rath, S. K., 2016. Software design pattern recognition using
machine learning techniques. IEEE Region 10 Conference (TENCON), Singapore, pp. 222-227.
doi: 10.1109/TENCON.2016.7847994

CASE STUDY IN GENERATIVE ADVERSARIAL NETWORKS FOR TEXTILE PATTERNS
GENERATION

101

Fayyaz, R. A., Maqbool, M. and Hanif, M., 2020. Textile Design Generation Using GANs. 2020 IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada,
pp. 1-5. doi: 10.1109/CCECE47787.2020.9255674

Gao, X., Deng, F. and Yue, X., 2020. Data augmentation in fault diagnosis based on the Wasserstein
generative adversarial network with gradient penalty. Neurocomputing, Vol. 396, pp. 487-494.
https://doi.org/10.1016/j.neucom.2018.10.109

Goodfellow, I. J. et al., 2014. Generative Adversarial Nets. Advances in Neural Information Processing
Systems, Vol. 3, pp. 2672-2680.

Gulrajani, I. et al., 2017. Improved Training of Wasserstein GANs. NIPS'17: Proceedings of the 31st
International Conference on Neural Information Processing Systems. Available at:
https://proceedings.neurips.cc/paper_files/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-
Paper.pdf

Huang, Z., 2018. Bird Generation with DCGAN. Stanford CS230 Deep Learning. Available at:
https://cs230.stanford.edu/projects_spring_2018/reports/8289337.pdf

Karegowda, A. G., Pooja, R., Rani, A. L. and Devika, G., 2024. Detection of Stain Defects in Textile
Industry using State-of-Art Transfer Learning Models. International Conference on Smart Systems for
applications in Electrical Sciences (ICSSES), Tumakuru, India, pp. 1-6,
doi: 10.1109/ICSSES62373.2024.10561384

Li, M., 2023. Research on Intelligent Clustering of Textile Fabric Pattern Based on K-Nearest Neighbors
Algorithm. IEEE 3rd International Conference on Electronic Communications, Internet of Things and
Big Data (ICEIB), Taichung, Taiwan, pp. 400-403, doi: 10.1109/ICEIB57887.2023.10170418

Li, M., 2024. Research on Textile Pattern Recognition Based on Artificial Intelligence. IEEE 7th Eurasian
Conference on Educational Innovation (ECEI), Bangkok, Thailand, pp. 335-338,
doi: 10.1109/ECEI60433.2024.10510796.

Liu X., Huang, H. and Wu, H., 2020. Intelligent generation algorithm of ceramic decorative pattern. 2020
IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on
High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and
Security (IDS), Baltimore, MD, USA, pp. 122-126. doi: 10.1109/BigDataSecurity-HPSC-
IDS49724.2020.00031.

Mishra, A. et al., 2024. GANs and Augmented Reality in Virtual Clothing Try-On. International
Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics
(IITCEE), Bangalore, India, pp. 1-6. doi: 10.1109/IITCEE59897.2024.10467813

Ren, R., Gu, L., Fu, H. and Sun, C., 2017. Super-resolution algorithm based on sparse representation and
wavelet preprocessing for remote sensing imagery. Journal of Applied Remote Sensing, Vol. 11,
No. 2.

Samia, B., Soraya, Z. and Malika, M., 2022. Fashion Images Classification using Machine Learning,
Deep Learning and Transfer Learning Models. 7th International Conference on Image and Signal
Processing and their Applications (ISPA), Mostaganem, Algeria, pp. 1-5.
doi: 10.1109/ISPA54004.2022.9786364

Soumith, M. and Denton, M., 2017. How to Train a GAN? Tips and tricks to make GANs work. GitHub
[online]. Available at: https://github.com/soumith/ganhacks

Weng, L., 2019. From GAN to WGAN. doi: https://doi.org/10.48550/arXiv.1904.08994
Yar, G. et al., 2023. TexGAN: Textile Pattern Generation Using Deep Convolutional Generative

Adversarial Network (DCGAN). 2023 IEEE International Conference on Emerging Trends in
Engineering, Sciences and Technology (ICES&T), Bahawalpur, Pakistan, pp. 1-6.
doi: 10.1109/ICEST56843.2023.10138848

Yi, M. et al., 2023. Research on Artificial Intelligence Art Image Synthesis Algorithm Based on Generation
Model. 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences
(ICDIIME), Madrid, Spain, pp. 102-106. doi: 10.1109/ICDIIME59043.2023.00026

Yoshimura, M. and Kasahara, S., 2016. Enhanced ray tracing algorithm to generate penumbra by point
light. Journal of Environmental Engineering (Transactions of AIJ), Vol. 81, No. 724, pp. 81-572.

