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ABSTRACT 

This study focuses on the implementation and evaluation of generative models for the generation of textile 
designs using Generative Adversarial Networks (GANs). The approach involved developing both 
unconditional and conditional versions of Wasserstein GANs (WGANs) and Wasserstein GANs with 
Gradient Penalty (WGAN-GP), as well as adaptations for higher resolution outputs. A diverse dataset of 
13,000 textile patterns was compiled, and the models were trained on this data, with architectures designed 
to optimize image generation in terms of both resolution and feature learning. The training process was 
analyzed using loss stability assessments, visual evaluation, and accuracy metrics. Results showed that 
WGAN-GP models demonstrated greater loss stabilization but lower overall accuracy since the 
discriminator learned faster, while conditional models showed improvement in image fidelity but with 
some divergence issues during training. Additionally, efforts to upscale output resolution to 256x256 pixels 
were largely unsuccessful, with significant loss oscillations and poor constructed generated samples. This 
study concludes with recommendations for further refinement of the model architectures and training 
strategies to improve the generation of high-quality, high-resolution textile designs. 
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1. INTRODUCTION 

The work described here is part of the TEXP@CT project, in the context of the work package 
on Digital Product and particularly Digital Tools for Creativity. The textile industry, often 
regarded as a bastion of creativity and artistry, is undergoing a transformative shift into the 
realm of knowledge-driven enterprises (Samia et al., 2022; Karegowda et al., 2024). While the 
artistic aspect of textile design remains paramount, the industry increasingly relies on 
technology, allocating substantial resources to stay at the forefront of innovation. The 
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integration of digital tools, crafted by seasoned professionals, has become a defining feature of 
this evolution (Mishra et al., 2024). In this dynamic landscape, machine learning emerges as a 
powerful catalyst for change, offering an avenue to understand and replicate intricate design 
patterns. Machine learning, as a discipline, revolves around the identification of patterns within 
selected data to predict outcomes or generate new material. Recent advancements in technology 
and processing power have catapulted machine learning into various applications, spanning data 
classification, statistical analysis, image recognition, and the development of intricate systems. 
One notable offshoot of machine learning, deep learning, relies on artificial neural networks to 
unravel complex patterns (Dwivedi et al., 2016; Li, 2024). This includes specialized neural 
network architectures such as convolutional neural networks (CNN), generative adversarial 
networks (GAN) and recurrent neural networks (RNN), each designed to excel in specific 
applications. Generative Adversarial Networks (GAN) are based on neural networks used for 
the generation of images (Goodfellow et al., 2014). It mainly consists of two parts, a generator 
and a discriminator or critic. The generator generates images through latent space and noise as 
its weights. These generated images are passed onto a discriminator which compares the 
generated images with the real images and calculates the error/loss value. These loss functions 
are passed onto the generator and discriminator to fine-tune according to loss function to 
produce better images and making better predictions. 

A method of textile image generation using Wasserstein Generative Adversarial Networks 
(WGAN) (Weng, 2019) and Wasserstein Generative Adversarial Networks with Gradient 
Penalty (WGAN-GP) (Gao, 2020) is introduced. According to our knowledge, few algorithms 
exist that are dedicated to generating proper textile patterns, resulting in the need for testing and 
evaluation of current models, and fine-tuning them. We have compared the performance of 2 
image generative algorithms such as WGANs (Weng, 2019; Arjovsky et al., 2017a),  
WGANs-GP (Gao, 2020) and added the concept of conditionality through the embedding of 
categories/classes. These models were chosen because they represented significant 
advancements in the field of Generative Adversarial Networks (GANs) and have addressed 
some of the limitations associated with traditional GANs, such as: 

 Stability and Convergence: Where WGAN addresses the issue of training instability and 
mode collapse that can be observed in traditional GANs. It introduces a more stable 
training procedure by replacing the Jensen-Shannon divergence with the Wasserstein 
distance in the objective function. 

 Wasserstein Distance: The use of Wasserstein distance allows for a more meaningful and 
continuous measure of the difference between the generator and real data distributions. 
This helps prevent gradients from disappearing or exploding during training. 

 Gradient Penalty: While WGAN improves stability, WGAN-GP further refines the 
training process by incorporating a gradient penalty. The gradient penalty addresses the 
problem of weight clipping used in WGAN, which can lead to suboptimal convergence. 
WGAN-GP penalizes the norm of the gradient of the critic (discriminator) with respect 
to its input, enforcing smoother convergence. 

 Mode Collapse Mitigation: WGAN-GP has been observed to be less prone to mode 
collapse, when compared to some traditional GAN formulations. Mode collapse occurs 
when the generator collapses to produce a limited set of similar samples. 

This article is divided into five sections: the present one which introduces the study carried 
out, followed by a section of related work about some utilities of the GANs, possible activities 
in the range of image manipulation and some case studies of GANs, in the textile pattern 
generation; then the implementation section describes a prepared dataset and explains the 
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process of building a GAN model and its conditionalization; the next section refers to the 
analysis of obtained results, through visual and loss stability assessments; and the last section 
indicates some conclusions about the study presented here. 

2. RELATED WORK 

Extensive research has been done in the field of GANs from generating simple images as simple 
as generation of bird images (Huang, 2018) to more complex subjects such as medical studies 
(Cepa et al., 2023) and complex designs (Liu et al., 2020). In the last few years, the evolution 
of machine learning algorithms and deep learning methods has resulted in different applications 
and has shown great results in many industries (Li, 2023). In general, the generative model can 
perform tasks like reasoning, density estimation, and sampling. The generation model can be 
separated into unconditional generation and conditional generation, based on the various inputs 
(Yoshimura and Kasahara, 2016). Image synthesis is an important research area within the field 
of computer vision (Yi et al., 2023). Its primary purpose is to transform images between 
different image domains, including applications such as image super-resolution generation, 
image coloring, image filling, style transformation, and attribute transformation. (Aittala et al., 
2016) uses CNN to learn the mapping between input images and output images, and (Ren et al., 
2017) decomposed the hidden space of an image into a domain-invariant content space and a 
domain-specific style space and obtained multimode output. A deep network model based on 
edge enhancement is proposed for image super-resolution reconstruction, and a deconvolution 
network is used to achieve the goal of edge enhancement.  

Considering textile design, (Yar et al., 2023) introduces the use of Generative Adversarial 
Networks (GANs), leveraging the image generation capabilities of GANs, the study curates a 
dataset of 17,000+ textile design images, categorized by design class. The authors employ a 
Deep Convolutional GAN (DCGAN) to collectively generate patterns and fine-tune it for 
specific pattern types, such as cheetah. The study claims three main contributions: dataset 
collection and classification, the introduction of GANs in textile design, and the training of a 
versatile DCGAN for efficient pattern generation. As for (Fayyaz et al., 2020), the study 
proposes an innovative approach to automated textile design pattern generation using generative 
models, claiming that the accuracy of classifying textile design patterns is enhanced by 2%, 
through data cleaning and pseudo labelling. Performance comparisons among Wasserstein 
Generative Adversarial Networks Gradient Penalty (WGANs GP), Deep Convolutional GANs 
(DCGANs), and Convolutional Variational Autoencoders (CVAEs) are conducted on a dataset 
for individual classes, assessed using the inception score. 

3. IMPLEMENTATION 

An experimental study was carried out. First, it was necessary to acquire and process data related 
to the problem of generating textile designs. Then, the desired algorithms were implemented, 
and an architecture was built, in order to be able to train the models. 
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3.1 Data Acquisition 

Before we started the process of textile patterns image generation, we had the need for a data 
set about textile patterns. We used a dataset made from different sources such as TexGan  
(Yar et al., 2023), clothing-pattern-dataset (Alexander et al., 2021) and some hand-picked 
images from sources such as Freepik, Shutterstock and Vecteezy. The dataset consists of 13,000 
images, divided by categories, as exemplified in Figure 1. 

 

 
Figure 1. Four pattern examples, from the dataset, for the floral and abstract categories 

The dataset was built using images of different resolutions, and we pre-processed all images 
before feeding the data models. As the images were loaded, we resized them to 64×64 pixels 
dimension and established the color channels as 3 (RGB), due to the lack of some computational 
power, to experiment with larger images. 

3.2 Base Algorithms 

For the purpose of this study, the developed models were based on the proposed algorithms 
represented in Figure 2, from (Arjovsky et al., 2017b), and represented in Figure 3 from 
(Gulrajani et al., 2017). Some considerations were also based on (Soumith and Denton, 2017) 
GAN-hacks. 

Following Figure 2, for each step the generator takes, during the training process, the 
discriminator will take n steps. As in basic GANs, we take the latent noise sample and the dataset 
sample to compute the gradient. RMSProp is the optimizer used and it is applied to the clipping 
technique, which clips every weight parameter in the network to be conformed within a certain 
range. Then the generator is trained, computing the gradient, and using the same optimizer. 

Following Figure 3, for each step the generator takes, during the training process, the 
discriminator will take n steps. Instead of clipping, it is introduced the concept of gradient 
penalty where it is added the interpolation of the generated sample and the dataset sample, and 
computed the norm of the gradient, which is desired to be approximately 1 for every 
interpolation, to satisfy the Lipschitz constraint. The optimizer used in this case is Adam.  

Simply put, the biggest differences between the algorithms are the introduction of clipping 
and gradient penalties that attempt to enforce the Lipschitz condition differently, and the 
difference between optimizers. 
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Figure 2. WGAN proposed algorithm (Arjovsky et al., 2017b) 

 

 
Figure 3. WGAN-GP proposed algorithm (Gulrajani et al., 2017) 

3.3 Wasserstein Generative Adversarial Network (WGAN) 

Based on the WGAN algorithm structure, we developed a Wasserstein Generative Adversarial 
Network model, where a specific generator and discriminator architecture was structured, taking 
into consideration that the generator will enlarge a certain input and try to construct features, 
while the discriminator will shrink the input, trying to detect features. As defined in the 
algorithm, the optimizer used was RMSprop and for each discriminator iteration, we clamped 
the weight clip of 0.01. 

3.3.1 Generator Architectures 

The generator architecture has 4 deconvolutional blocks (deconvolutional layer, normalization 
and ReLU activation function) and a final deconvolutional layer with ReLU activation function. 
Each deconvolutional layer has an input (number of channels in the image), output (produced 
number of channels), kernel size (convolving kernel size), stride (for cross-correlation), padding 
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and bias. During the generation process, the generator takes and goes through the following 
number of channels (initial noise, 1024), (1024, 512), (512, 256), (256, 128) and (128, 64). The 
kernel size, stride, padding and bias are set as 4, 2, 1, false. 

3.3.2 Discriminator Architectures 

The discriminator architecture has an initial convolutional layer with LeakyReLU activation 
function, 3 convolutional blocks (convolutional layer, normalization and LeakyReLU activation 
function) and a final convolutional layer. Each convolutional layer has an input (number of 
channels in the image), output (produced number of channels), kernel size (convolving kernel 
size), stride (stride of the convolution), padding and bias. During the discrimination process, the 
discriminator takes and goes through the following number of channels (64, 64), (64, 128), (128, 
256), (256, 512) and (512, 1). The kernel size, stride, padding and bias are set as 4, 2, 1, false. 

3.4 Wasserstein Generative Adversarial Network with Gradient 
Penalty (WGAN-GP) 

Based on the WGAN-GP algorithm structure, we developed a Wasserstein Generative 
Adversarial Network with Gradient Penalty model, where a specific generator and discriminator 
architecture was structured. As established in the algorithm, the optimizer used was Adam with 
betas of (0.0, 0.9). and for each discriminator iteration, we calculated the gradient penalty 
through the interpolated images and respective mixed scores, ending up multiplied by 10 and 
added to the discriminator loss. 

3.4.1 Generator Architectures 

The generator architecture has 4 deconvolutional blocks (deconvolutional layer, normalization 
and ReLU activation function) and a final deconvolutional layer with ReLU activation function. 
Each deconvolutional layer has an input (number of channels in the image), output (produced 
number of channels), kernel size (convolving kernel size), stride (for cross-correlation), padding 
and bias. During the generation process, the generator takes and goes through the following 
number of channels (initial noise, 1024), (1024, 512), (512, 256), (256, 128) and (128, 64). The 
kernel size, stride, padding and bias are set as 4, 2, 1, false. 

3.4.2 Discriminator Architectures 

The discriminator architecture has an initial convolutional layer with LeakyReLU activation 
function, 3 convolutional blocks (convolutional layer, normalization and LeakyReLU activation 
function) and a final convolutional layer. Each convolutional layer has an input (number of 
channels in the image), output (produced number of channels), kernel size (convolving kernel 
size), stride (stride of the convolution), padding and bias. During the discrimination process, the 
discriminator takes and goes through the following number of channels (64, 64), (64, 128), (128, 
256), (256, 512) and (512, 1). The kernel size, stride, padding and bias are set as 4, 2, 1, false. 

3.5 Conditional WGAN and Conditional WGAN-GP 

Following the models i.e., basic conditional adaptations of the models were developed. For 
these, we introduced categories/classes, as each image in the dataset belongs to a class such as 
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Floral, Geometric, Cultural, Abstract, etc. Concerning the generator and discriminator 
Architectures, for this case, we kept both models’ architectures i.e., but we embedded the 
existing classes of the dataset and added the respective class of each image, into the generator 
and discriminator. This way, both Generator and Discriminator will take into consideration this 
new characteristic. 

3.5.1 Generator Architectures 

Both models keep the same generator architecture, while implementing little alterations for the 
embedding. The embedding takes the classes and the embedding dimension and embeds in each 
image the labels, creating a new tensor, and with the objective of learning to generate more 
specific images guided by the label. During the generation process, the generator takes and goes 
through the following number of channels (initial noise + embedding dimension, 1024), (1024, 
512), (512, 256), (256, 128) and (128, 64). 

3.5.2 Discriminator Architectures 

Both models keep the same discriminator architecture, while implementing little changes for 
the embedding. In this case, the embedding follows basically the same structure as in the 
generator and tries to associate the label with the extracted characteristics. During the 
discrimination process, the discriminator takes and goes through the following number of 
channels (64 + 1, 64), (64, 128), (128, 256), (256, 512) and (512, 1). 

3.6 Conditional WGAN with 256x256 Output 

According to the Conditional Wasserstein Generative Adversarial Network model i.e., we made 
some adaptations for the 256x256 resolution output instead of 64x64 as per the other 4 models. 
Considering that the amount of time needed for training grows exponentially based on the 
resolution and characteristics/features, we experimented with 2 different sets of values (normal 
and lowered sets).  

3.6.1 Generator Architectures 

The generator architecture follows the same pattern as the 64x64 conditional WGAN, with the 
addition of 2 extra blocks. During the generation process, for the lowered set, the generator takes 
and goes through the following number of channels (initial noise + embedding dimension, 256), 
(256, 128), (128, 64), (64, 32), (32, 16), (16, 8) and (8, 4). For the normal set, the generator 
takes and goes through the following number of channels (initial noise + embedding dimension, 
1024), (1024, 512), (512, 256), (256, 128), (128, 64), (64, 32) and (32, 16). 

3.6.2 Discriminator Architectures 

The discriminator architecture follows the same pattern as the 64x64 conditional WGAN, with 
the addition of 2 extra blocks. During the discrimination process, for the lowered set, the 
discriminator takes and goes through the following number of channels (64 + 1, 8), (8, 16),  
(16, 32), (32, 64), (64, 128), (128, 256) and (256, 1). For the normal set, the discriminator takes 
and goes through the following number of channels (64 + 1, 16), (16, 32), (32, 64), (64, 128), 
(128, 256), (256, 512) and (512, 1). 
 



IADIS International Journal on Computer Science and Information Systems 

94 

3.7 Training Hyperparameters and Resources 

Several hyperparameters were defined for every model with the output of 64x64 resolution.  
The computational resources consisted of a laptop with a professional mobile graphics chip by 
NVIDIA: Quadro RTX 4000 MAX-Q Design, a mobile processor with 8 cores: Intel I7-10875H 
and 32GB RAM. In terms of functional hyperparameters, we defined the necessary ones as 
follows: 

 Learning rate = 5e-5 
 Batch size = 64 
 Image size = 64 
 Color channels = 3 
 Noise dimension = 100 
 Discriminator characteristics = 64 
 Generator characteristics = 64 
 Discriminator iterations = 5 
 Number of cycles = 200 
 Embedding noise dimension = 100 
After the initial experiments, we had some issues with the computational resources, so we 

transferred the models to a new laptop with the Apple M3 Pro chipset model and 32GB RAM. 
With these new resources we trained a CWGAN model for the 256x256 output resolution.  
As such, we decided to use the same hyperparameters, introducing only 2 changes: 

 Image size = 256 
 Number of cycles = 150 

4. RESULTS ANALYSIS 

Following, the training parameters i.e., for each epoch, the model weights were stored and can 
be implemented to transfer learning. The results were evaluated through visual and loss stability 
assessment. 

4.1 Unconditional Models 

For the base models (unconditional), where the models (WGAN and WGAN-GP) where trained 
while ignoring any type of labeling, resulting in the generation of random images, we saved and 
assessed the convergence of the generator and discriminator losses. We also tried to assess the 
visual output to identify characteristics. 

4.1.1 Loss Stability Assessment 

Knowing that, in practical terms, optimizers try to minimize loss functions, we can compare the 
performance of the discriminator and the generator. Therefore, an analysis was carried out on 
the losses of each model throughout the training process, as observed in Figure 4. The 
discriminator loss aims to maximize the mean of scores for real samples (encouraging correct 
classification of real samples) and minimize the mean of scores for synthetic samples 
(encouraging correct classification of fake samples). The generator loss aims to maximize the 
mean of discriminator scores assigned to its synthetic samples, thereby encouraging the 
generator to produce realistic samples that fool the discriminator. 
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Figure 4. Losses during training of both unconditional models 

For the WGAN model, the losses gradually decreased over time, whoever the stabilization 
seems lacking in comparison with the WGAN-GP model, where the convergence appears to be 
cleaner and stable. This, however, does not mean that the results obtained are better. Even if we 
consider that the WGAN-GP model had better stabilization, the discrepancy between the loss 
values indicates that the Generator performed poorly, when compared to the Discriminator. This 
means that, refinement is needed to reduce the discrepancy. Overall, both Generator and 
Discriminator have done their job, and the accuracy calculated (probability of the synthetic 
image being recognized as real) was on average 35% for the WGAN model, and 10% for the 
WGAN-GP model. 

4.1.2 Visual Assessment 

Based on the performed training, Figure 5 shows 64 images generated by the models, after 
training for 200 cycles. The first set of 32 images were generated by the WGAN model, while 
the other set were generated by the WGAN-GP model. 

Figure 5. The 32 generated images from each model 
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From the beginning of this study, we expected that the lack of a higher resolution would 
make the visual comparison, between the models, more complicated and less viable. As such, 
taking into consideration that the images are 64x64, some generated examples, from both 
models, appear to resemble some characteristics of the dataset, even if mostly hard to perceive, 
as observed in Figure 6. 

 
Figure 6. Synthetic and real samples using the WGAN model 

4.2 Conditional Models 

For the conditional models, where the models (WGAN and WGAN-GP) where trained, while 
embedding labels that represent the category/class that each image belongs to, resulting in the 
generation of images belonging to a specific category, we saved and assessed the convergence 
of the losses and the visual outputs of some of the categories. 

4.2.1 Loss Stability Assessment 

For the Conditional WGAN model, as represented by Figure 7, the losses gradually decreased 
over time, but the losses oscillations are not desirable. The accuracy calculated as an average of 
40%. This indicates that the conditionalization made the accuracy go up by 5%, but still, the 
accuracy is considerably low, which shows that there is a lot of room for improvement. 

 

 
Figure 7. Losses during training of the CWGAN model 
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For the Conditional WGAN-GP model, represented in Figure 8, the losses presented an 
unexpected behavior, where the generator loss started to increase and diverge, from the 50 cycle 
forward. The main cause could be the fast decrease in discriminator loss, making the generator 
unable to maintain the discriminator. As a result, the discriminator will easily identify the 
synthetic images, as shown through the accuracy, which was also calculated with an output 
always around 0%. 

 

 
Figure 8. Losses during training of the CWAGAN-GP model 

4.2.2 Visual Assessment 

Figure 9 shows the generated images by the conditional models. The first set of 16 images were 
generated by the Conditional WGAN model, while the other set by the Conditional WGAN-GP 
model. The samples were generated by inputting the desired category, and as such, most of the 
samples show some characteristics of the class they belong to, even if hard to perceive as it lacks 
detail and resolution.  

 
Figure 9. The 4 generated samples per selected class 
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The first set of samples were easy to pick, since the generator didn't deviate much in quality. 
As for the second set, the generator had a hard time generating consistent samples. This may be 
caused by the training of the WGAN-GP model, where it showed some unexpected behavior, 
as mentioned in the stability assessment. Figure 10 presents some synthetic and real images that 
shows some levels of similarity. 

 
Figure 10. Synthetic and real samples using the WGAN-GP model 

4.3 Conditional WGAN 256x256 

For the Conditional WGAN model with 256x256 output with both lower and normal values, we 
followed the same training pattern as in the 64x64 model with some simple changes. 

4.3.1 Loss Stability Assessment 

As represented by Figure 11, the losses of the lower value model showed that the training did 
proceed somewhat since there is convergence, even if the oscillation is severe. The generation’s 
results were poor, but we expected that, since we had lowered the values. 

 

 

Figure 11. Losses during training of the CWGAN (256x256) model with lower values 
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For the normal values, represented in Figure 12, the losses presented an unexpected 
behavior, where both losses seemed stagnant. From these results we jumped into the generation 
of samples to verify if the outputs were at least acceptable. 

 

 
Figure 12. Losses during training of the CWGAN (256x256) model with normal values 

4.3.2 Visual Assessment 

Figure 13 shows the generated samples under the two sets of values i.e. The first set of 3 images 
was generated by the lower set, while the other set was generated by the normal set of values. 
With a higher resolution, while maintaining the same model structure, we expected the results 
not to change much, compared to the 64x64 output with the normal values, but, as with the loss 
assessment, the results were not acceptable. 

 
Figure 13. The 3 generated samples per value set 

The first set of samples where, even when we expected it to be bad, was not acceptable, 
since we can actually try to recognize any features. As for the second set, the conclusion was 
the same because the results were poor. Even considering that the output resolution was correct, 
the overall experiment with 256x256 was a failure, because the generated samples did not 
present any similarity in characteristics to the real samples. 
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5. CONCLUSIONS 

In this article, we implemented two models to solve the problem of unique textile pattern 
generation. As the results show, both models were functional, but there is a lot to take into 
consideration going forward. Using higher resolutions is quite necessary, if we want to do visual 
assessments properly, which in this case we could not analyze any type of refined details. Also, 
for both models, the losses absolute value gradually lowered, which is desired, but the  
WGAN-GP model needs extra refinement so the Generator can keep up with the Discriminator. 
Based on the accuracy calculated and the overall results, there is a long way to go until we reach 
the desired performance. Based on the accuracy results, knowing that the conditionalization of 
the WGAN model upgraded in average 5%, it indicated a positive value. Considering the 
experimentation failure using the 256x256 resolution, we intend to retest the training, after 
running some verifications on the architectures that seem to be wrongly built. 

Since we lack computational resources for big experimentations, we will focus on a unique 
category of pattern and change our approach into the problem, taking in consideration various 
characteristics of the patterns such as composition, key elements, style, and padding, to verify 
if it can further upgrade the performance of the model. Also fine-tuning, in general, is needed 
for the aim of 90%+ accuracy and high-quality samples, for such we will completely change the 
architecture of the generator and discriminator to fit the needs of the problem. We also intend 
to get opinions from professionals in the field of textile design to better understand future results. 
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